3D reconstruction for the lower limb prosthesis development
Published 2019-12-31
Keywords
- direct digital manufacturing,
- integration of technology model,
- prosthesis,
- reverse engineering
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The research aim was to propose a new process for obtaining lower limb sockets based on virtual technologies and additive manufacturing use. Previously, the low-cost scanners and his technical feasibility to use it in the development process of a socket from 3D reconstruction was identified. A case study with a participant with transfemoral amputation and quadrilateral socket was conducted. A comparative evaluation of the traditional process and the process based on digital manufacturing technologies was carried out. A technology integration model (Reverse Engineering, CAD and 3D printing) was proposed, setting one point of reference for new medical applications. Likewise, the model utility for technology’s portability, the changes management, and the raw materials and waste reduction, in comparison with the traditional technique was verified.
Downloads
References
[2] A. Theorin et al., “An event-driven manufacturing information system architecture for Industry 4.0,” Int. J. Prod. Res., vol. 55, no. 5, pp. 1297–1311, Mar. 2017, doi: 10.1080/00207543.2016.1201604.
[3] D. Chen, S. Heyer, S. Ibbotson, K. Salonitis, J. G. Steingrímsson, and S. Thiede, “Direct digital manufacturing: definition, evolution, and sustainability implications,” J. Clean. Prod., vol. 107, pp. 615–625, 2015, doi: 10.1016/j.jclepro.2015.05.009.
[4] M. Javaid and A. Haleem, “Current status and applications of additive manufacturing in dentistry: A literature-based review,” J. Oral Biol. Craniofacial Res., vol. 9, no. 3, pp. 179–185, 2019, doi: 10.1016/j.jobcr.2019.04.004.
[5] S. Laing, P. V. Lee, and J. C. Goh, “Engineering a trans-tibial prosthetic socket for the lower limb amputee.,” Ann. Acad. Med. Singapore, vol. 40, no. 5, pp. 252–259, May 2011.
[6] M. Buzzi, G. Colombo, G. Facoetti, S. Gabbiadini, and C. Rizzi, “3D modelling and knowledge: tools to automate prosthesis development process,” Int. J. Interact. Des. Manuf., vol. 6, no. 1, pp. 41–53, 2012, doi: 10.1007/s12008-011-0137-5.
[7] A. Vitali, D. Regazzoni, C. Rizzi, and G. Colombo, “Design and Additive Manufacturing of Lower Limb Prosthetic Socket,” in ASME 2017 International Mechanical Engineering Congress and Exposition, 2017, p. 7. doi: 10.1115/IMECE2017-71494.
[8] E. L. Doubrovski, E. Y. Tsai, D. Dikovsky, J. M. P. Geraedts, H. Herr, and N. Oxman, “Voxel-based fabrication through material property mapping: A design method for bitmap printing,” Comput. Des., vol. 60, pp. 3–13, 2015, doi: 10.1016/j.cad.2014.05.010.
[9] A. S. Dickinson, J. W. Steer, C. J. Woods, and P. R. Worsley, “Registering methodology for imaging and analysis of residual-limb shape after transtibial amputation.,” J. Rehabil. Res. Dev., vol. 53, no. 2, pp. 207–218, 2016, doi: 10.1682/JRRD.2014.10.0272.
[10] L. H. Hsu, G. F. Huang, C. T. Lu, D. Y. Hong, and S. H. Liu, “The Development of a Rapid Prototyping Prosthetic Socket Coated with a Resin Layer for Transtibial Amputees,” Prosthet. Orthot. Int., vol. 34, no. 1, pp. 37–45, Mar. 2010, doi: 10.3109/03093640902911820.
[11] G. Colombo, S. Filippi, C. Rizzi, and F. Rotini, “A new design paradigm for the development of customfit soft sockets for lower limb prostheses,” Comput. Ind., vol. 61, no. 6, pp. 513–523, 2010, doi: 10.1016/j.compind.2010.03.008.
[12] S. Gabbiadini, G. Colombo, G. Facoetti, and C. Rizzi, “Knowledge Management and Customised 3D Modelling to Improve Prosthesis Design,” in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, pp. 625–633. doi: 10.1115/DETC2009-87158.
[13] N. Herbert, D. Simpson, W. D. Spence, and W. Ion, “A preliminary investigation into the development of 3-D printing of prosthetic sockets.,” J. Rehabil. Res. Dev., vol. 42, no. 2, pp. 141–146, 2005, doi: 10.1682/jrrd.2004.08.0134.
[14] J. E. Sanders, M. R. Severance, D. L. Swartzendruber, K. J. Allyn, and M. A. Ciol, “Influence of prior activity on residual limb volume and shape measured using plaster casting: results from individuals with transtibial limb loss,” J. Rehabil. Res. Dev., vol. 50, no. 7, pp. 1007–1016, 2013, doi: 10.1682/JRRD.2012.10.0195.
[15] Q. Li et al., “Smart manufacturing standardization: Architectures, reference models and standards framework,” Comput. Ind., vol. 101, pp. 91– 106, 2018, doi: 10.1016/j.compind.2018.06.005.
[16] G. Colombo, G. Facoetti, and C. Rizzi, “A digital patient for computer-aided prosthesis design.,” Interface Focus, vol. 3, no. 2, p. 20120082, Apr. 2013, doi: 10.1098/rsfs.2012.0082.
[17] Y.-P. Lin, C.-T. Wang, and K.-R. Dai, “Reverse engineering in CAD model reconstruction of customized artificial joint,” Med. Eng. Phys., vol. 27, no. 2, pp. 189– 193, 2005, doi: 10.1016/j.medengphy.2004.09.006.
[18] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb, “Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion,” in 2013 International Conference on 3D Vision - 3DV 2013, 2013, pp. 1–8. doi: 10.1109/3DV.2013.9.
[19] T. Kucklick, “The Medical Device R&D Handbook, Second Edition,” in Reverse Engineering in Medical Device Design, CRC Press, 2012, pp. 161–192. doi: 10.1201/b13657.
[20] G. Colombo, G. Facoetti, C. Rizzi, and A. Vitali, “Socket virtual design based on low cost hand tracking and haptic devices,” in Proceedings - VRCAI 2013: 12th ACM SIGGRAPH International Conference on VirtualReality Continuum and Its Applications in Industry, 2013, pp. 63–69. doi: 10.1145/2534329.2534351.
[21] A. Khongma, M. Ruchanurucks, T. Koanantakool, T. Phatrapornnant, Y. Koike, and P. Rakprayoon, “Kinect Quality Enhancement for Triangular Mesh Reconstruction with a Medical Image Application BT - Soft Computing Techniques in Engineering Applications,” in Soft Computing Techniques in Engineering Applications, S. Patnaik and B. Zhong, Eds. Cham: Springer International Publishing, 2014, pp. 15–32. doi: 10.1007/978-3-319-04693-8_2.
[22] R. L. Landon, M. W. Hast, and S. J. Piazza, “Robust contact modeling using trimmed NURBS surfaces for dynamic simulations of articular contact,” Comput. Methods Appl. Mech. Eng., vol. 198, no. 30, pp. 2339–2346, 2009, doi: 10.1016/j.cma.2009.02.022.
[23] L. Hieu et al., “Medical Reverse Engineering Applications and Methods,” in 2ND International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development MECAHITECH‘10, 2010, pp. 232–246.
[24] S. Singare, L. Dichen, L. Bingheng, L. Yanpu, G. Zhenyu, and L. Yaxiong, “Design and fabrication of custom mandible titanium tray based on rapid prototyping,” Med. Eng. Phys., vol. 26, no. 8, pp. 671– 676, 2004, doi: 10.1016/j.medengphy.2004.06.001.
[25] J. F. Isaza and S. Correa, “Methodology for 3D reconstruction of craniofacial structures and their use in the finite element method | Ingeniería y Ciencia,” Ing. y Cienc., vol. 4, no. 7, pp. 129–149, 2008.
[26] E. Heissler et al., “Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects.,” Int. J. Oral Maxillofac. Surg., vol. 27, no. 5, pp. 334–338, Oct. 1998, doi: 10.1016/s0901-5027(98)80060-x.
[27] H. Rotaru et al., “Cranioplasty with custom-made implants: analyzing the cases of 10 patients.,” J. Oral Maxillofac. Surg., vol. 70, no. 2, pp. e169-76, Feb. 2012, doi: 10.1016/j.joms.2011.09.036.
[28] O. L. A. Harrysson, Y. A. Hosni, and J. F. Nayfeh, “Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study,” BMC Musculoskelet. Disord., vol. 8, p. 91, Sep. 2007, doi:10.1186/1471-2474-8-91.
[29] S. F. Mustafa, P. L. Evans, A. Bocca, D. W. Patton, A. W. Sugar, and P. W. Baxter, “Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases.,” Int. J. Oral Maxillofac. Surg., vol. 40, no. 12, pp. 1357–1362, Dec. 2011, doi: 10.1016/j.ijom.2011.04.020.
[30] A. Marro, T. Bandukwala, and W. Mak, “ThreeDimensional Printing and Medical Imaging: A Review of the Methods and Applications.,” Curr. Probl. Diagn. Radiol., vol. 45, no. 1, pp. 2–9, 2016, doi: 10.1067/j.cpradiol.2015.07.009.
[31] J. S. Olson and W. A. Kellogg, Ways of knowing in HCI. Springer New York, 2014. doi: 10.1007/978-14939-0378-8
[32] Y. Wan, J. Wang, J. Hu, T. Song, Y. Bai, and Z. Ji, “A Study in 3D-Reconstruction Using Kinect Sensor,” in 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing, 2012, pp. 1–7. doi: 10.1109/WiCOM.2012.6478374.
[33] J. A. Machuca, “Propuesta De Diseno De Un Socket Para Usuarios Con Amputacion Transfemoral, Basado En La Integracion De Tecnicas De Ingenieria Inversa, Modalidad Practica Empresarial En La Empresa Lineas Hospitalarias S.A.S.,” Universidad Industrial de Santander, 2015.
[34] A. R. Moreno Pardo, “Desarrollo De Un Socket Para Amputacion Transtibial Adaptable A Los Cambios De Volumen Del Muñon,” Universidad Industrial de Santander, 2016.
[35] 3D Systems Incorp, “SenseTM2 3D Scanner Manual.”
[36] “LMI Technologies,” 2017. [Online]. Available: https://lmi3d.com/. [Accessed: 27-Nov-2017].
[37] G. Pomaska, “Monitoring The Deterioration Of Stone At Mindener Museum’s Lapidarium,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-5/W2, pp. 495–500, Jul. 2013, doi: 10.5194/isprsarchives-XL5-W2-495-2013.
[38] L. A. Bravo Rivera And M. P. Solano Blanco, “Diseño de proceso para la obtención de socket temporal en miembro inferior por medio de manufactura digital,” Universidad Industrial de Santander, 2018.
[39] S. Zennaro et al., “Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications,” in 2015 IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1–6. doi: 10.1109/ICME.2015.7177380.
[40] S. E. Harpe, “How to analyze Likert and other rating scale data,” Curr. Pharm. Teach. Learn., vol. 7, no. 6, pp. 836–850, 2015, doi: 10.1016/j.cptl.2015.08.001.
[41] F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3222–3229. doi: 10.1109/CVPR.2014.418.
[42] F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3222–3229. doi: 10.1109/CVPR.2014.418.
[43] E. Lachat, H. Macher, M.-A. Mittet, T. Landes, And P. Grussenmeyer, “First Experiences With Kinect V2 Sensor For Close Range 3d Modelling,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL5/W4, pp. 93–100, Feb. 2015, doi: 10.5194/isprsarchives-XL-5-W4-93-2015.
[44] B. Wang, “The Future of Manufacturing: A New Perspective,” Engineering, vol. 4, no. 5, pp. 722–728, 2018, doi: 10.1016/j.eng.2018.07.020.