Vol. 19 No. 1 (2020): Revista UIS Ingenierías
Articles

Design methodology and computational fluid dynamics of the impeller and volute of a centrifugal compressor

Juan Felipe Rincón-Franco
Universidad Pontificia Bolivariana
Gabriel Fernando García-Sánchez
Universidad Pontificia Bolivariana

Published 2019-10-31

Keywords

  • centrifugal compressor,
  • impeller,
  • volute,
  • CFD

How to Cite

Rincón-Franco, J. F., & García-Sánchez, G. F. (2019). Design methodology and computational fluid dynamics of the impeller and volute of a centrifugal compressor. Revista UIS Ingenierías, 19(1), 49–58. https://doi.org/10.18273/revuin.v19n1-2020004

Abstract

This project deals with the 3D design of an impeller and an external volute for a centrifugal compressor through the combination of 2 compatible methodologies. To achieve a successful design, thermodynamic and geometric parameters were computed. Besides, a CFD analysis was carried out to determine the performance curves, which show that the calculations precisely represent the reality because the relative error between the calculation and the simulations output parameter was 3.26% for the efficiency, 3.31% for the outlet temperature, 13% for the total pressure outlet and 7.14% for the outlet static pressure. A validation of the simulation methodology was carried out by replicating the results of the investigation presented by Mojaddam, obtaining an error percentage of 11.69% for the total pressure ratio and a 3.89% of error for the isentropic efficiency.

Downloads

Download data is not yet available.

References

[1] M. Mojaddam and R. K. Pullen, “Optimization of a Centrifugal Compressor Using the Design of Experiment Technique,” Appl. Sci., vol. 9, no. 2, 2019, doi: 10.3390/app9020291.

[2] R. H. Aungier, Centrifugal compressors : a strategy for aerodynamic design and analysis. ASME Press, 2000.

[3] R. H. Aungier, “Centrifugal compressor stage preliminary aerodynamic design and component sizing,” in Proceedings of the ASME Turbo Expo, 1995, vol. 1.

[4] K. H. Lüdtke, Process Centrifugal Compressors. Springer Berlin Heidelberg, 2004.

[5] A. Meroni, B. Zühlsdorf, B. Elmegaard, and F. Haglind, “Design of centrifugal compressors for heat pump systems,” Appl. Energy, vol. 232, pp. 139–156, 2018, doi: 10.1016/j.apenergy.2018.09.210.

[6] M. Casey, F. Gersbach, and C. Robinson, “An optimization technique for radial compressor impellers,” in Proceedings of the ASME Turbo Expo, 2008, vol. 6, no. PART C, pp. 2401–2411.

[7] F. Chu, F. Wang, X. Wang, and S. Zhang, “A model for parameter estimation of multistage centrifugal compressor and compressor performance analysis using genetic algorithm,” Sci. China Technol. Sci., vol. 55, no. 11, pp. 3163–3175, 2012, doi: 10.1007/s11431-012-5029-9.

[8] A. Hildebrandt and T. Ceyrowsky, “One-dimensional and three- dimensional design strategies for pressure slope optimization of high-flow transonic centrifugal compressor impellers,” J. Turbomach., vol. 141, no. 5, p. 11, May 2019, doi: 10.1115/1.4041907.

[9] A. J. Stepanoff, Centrifugal and axial flow pumps. Theory, design and application. Wiley, 1957.

[10] P. C. Hanlon, Compressor Handbook. McGraw-Hill, 2001.

[11] E. I. Gutiérrez Velásquez, “Determination Of A Suitable Set Of Loss Models For Centrifugal Compressor Performance Prediction,” Chinese J. Aeronaut., Vol. 30, No. 5, Pp. 1644–1650, 2017, Doi: 10.1016/J.Cja.2017.08.002.

[12] Rolls-Royce plc, The jet engine., 5th ed. Wiley, 2015.

[13] Y. Wan, J. Guan, and S. Xu, “Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application,” Int. J. Hydrogen Energy, vol. 42, no. 8, pp. 5590–5605, 2017, doi: 10.1016/j.ijhydene.2016.08.162.

[14] P. J. Pritchard And J. C. Leylegian, Fox And Mcdonald’s Introduction To Fluid Mechanics, 8th Ed. Wiley Plus, 2011.

[15] M. Mojaddam and A. Hajilouy-Benisi, “Experimental and numerical flow field investigation through two types of radial flow compressor volutes,” Exp. Therm. Fluid Sci., vol. 78, pp. 137–146, 2016, doi: 10.1016/j.expthermflusci.2016.05.016.

[16] Y. A. Çengel and M. A. Boles, Termodinámica, 7th ed. McGraw-Hill, 2013.

[17] S. C. Chapra and R. P. Canale, Métodos numéricos para ingenieros, 5th ed. McGraw-Hill, 2006.

[18] D. C. J. Freitas, “Editorial,” J. Fluids Eng., vol. 115, no. 3, pp. 339–340, Sep. 1993, doi: 10.1115/1.2910144.

[19] M. Woelke, “Eddy Viscosity Turbulence Models emploed by Computational Fluid Dynamic,” Pr. Inst. Lotnictwa, vol. 191, no. 4, pp. 92–113, 2007.

[20] D. C. Wilcox, Turbulence modeling for CFD. DCW Industries, 2006.

[21] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics : the finite volume method. Pearson Education Ltd, 2007.

[22] X. Yang, X. Zhu, C. Hu, and Z. Du, “Compressed dynamic mode decomposition for the analysis of centrifugal compressor volute,” Int. J. Heat Fluid Flow, vol. 74, pp. 118–129, 2018, doi: 10.1016/j.ijheatfluidflow.2018.09.013.

[23] O. Atac, J.-E. Yun, and T. Noh, “Aerodynamic Design Optimization of a Micro Radial Compressor of a Turbocharger,” Energies, vol. 11, no. 7, p. 1827, Jul. 2018, doi: 10.3390/en11071827.