Vol. 20 Núm. 3 (2021): Revista UIS Ingenierías
Artículos

Caracterización dimensional con ultrasonido por arreglo de fases de discontinuidades inducidas en acero ASTM A36 mediante procesos de electroerosión y soldadura SMAW W

Carlos Andrés Galán-Pinilla
Universidad Industrial de Santander
Luz Amparo Quintero-Ortiz
Universidad Industrial de Santander
Julián Orlando Herrera-Ortiz
Universidad Industrial de Santander

Publicado 2021-06-07

Palabras clave

  • entallas mecanizadas por electroerosión,
  • escaneo sectorial,
  • ultrasonido por arreglo de fases,
  • resolución angular,
  • EDM,
  • PAUT,
  • S-Scan
  • ...Más
    Menos

Cómo citar

Galán-Pinilla, C. A., Quintero-Ortiz, L. A., & Herrera-Ortiz, J. O. (2021). Caracterización dimensional con ultrasonido por arreglo de fases de discontinuidades inducidas en acero ASTM A36 mediante procesos de electroerosión y soldadura SMAW W. Revista UIS Ingenierías, 20(3), 147–154. https://doi.org/10.18273/revuin.v20n3-2021010

Resumen

En esta investigación se evaluó el efecto que tienen las variables de la técnica de ultrasonido con arreglo de fases en los escaneos con haz angular sectorial “S-Scan” y la morfología geométrica de las discontinuadas planares como la inclinación respecto al haz ultrasónico y la forma del extremo sobre la exactitud en las mediciones. El estudio se desarrolló en dos etapas: en la primera se diseñaron y elaboraron ocho muestras de acero ASTM A36 con entallas mecanizadas mediante electroerosión por penetración y una muestra soldada con falta de penetración en una soldadura a tope; y en la segunda la medición del tamaño de las discontinuidades a partir de mediciones con ultrasonido empleando diferentes configuraciones del arreglo de fases. Mediante análisis estadístico se determinó el efecto de cada variable y configuraciones de inspección con errores entre 0,2 % y 120 %.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] T. R. Sathish, M. M. M. Patnaik, “Evaluation of Stress Intensity Factor of Welded Structural Steel Component,” Int. J. Res. Aeronaut. Mech. Eng., vol. 1, no. 5, pp. 1-18, 2013.

[2] A. Ali et al., “Ultrasonic Testing as Alternative for Radiography for Evaluation of PFBR Blanket Pin End Plug Weld Integrity,” Procedia Struct. Integr., vol. 14, no. 2018, pp. 273-281, 2019. doi: 10.1016/j.prostr.2019.05.035

[3] M. V. Felice, A. Velichko, P. D. Wilcox, “Accurate depth measurement of small surface-breaking cracks using an ultrasonic array post-processing technique,” NDT & E Int., vol. 68, pp. 105-112, 2014. doi: 10.1016/j.ndteint.2014.08.004

[4] M. jae Jung, B. cheol Park, J. hoon Bae, S. chul Shin, “PAUT-based defect detection method for submarine pressure hulls,” Int. J. Nav. Archit. Ocean Eng., vol. 10, no. 2, pp. 153-169, 2018. doi: 10.1016/j.ijnaoe.2017.06.002

[5] Olympus NDT, Introduction to Phased Array Ultrasonic Technology Applications. Waltham, MA, USA: R/D Tech Guideline, 2004.

[6] T. N. Daniel Kass, M. Moles, Phased Array Testing. Waltham, MA, USA: OLYMPUS, 2014.

[7] Olympus NDT, Advances in Phased Array Ultrasonic Technology Applications. Waltham, MA, USA: OLYMPUS, 2007.

[8] T. Armitt, “Phased Arrays Not The Answer To Every Application,” in 9th European Conference on NDT: ECNDT, 2006, pp. 1-15.

[9] I. Virkkunen, K. Miettinen, T. Packalén, “Virtual flaws for NDE training and qualification 2. Virtual flaws for NDE training and qualification,” in 11th European Conference on Non-Destructive Testing: ECNDT 2014.

[10] E. Ginzel, S. James, “Variables to consider in the fabrication of ultrasonic reference blocks,” e-Journal Nondestruct. Test., vol. 19, no. 5, pp. 1-28, 2014.

[11] M. Kemppainen, I. Virkkunen, “Crack characteristics and their importance to NDE,” J. Nondestruct. Eval., vol. 30, no. 3, pp. 143-157, 2011. doi: 10.1007/s10921-011-0102-z

[12] P. Nanekar, A. Kumar, T. Jayakumar, “Characterization of planar flaws by synthetic focusing of sound beam using linear arrays,” Case Stud. Nondestruct. Test. Eval., vol. 3, pp. 9-14, 2015. doi: 10.1016/j.csndt.2015.01.001

[13] P. Nanekar, N. Jothilakshmi, A. Kumar, T. Jayakumar, “Characterization of planar flaws by an integrated approach using phased array and synthetic aperture focusing technique,” Measurement, vol. 147, pp. 106845, 2019. doi: 10.1016/j.measurement.2019.07.073

[14] H. H. Kim, H. J. Kim, S. J. Song, K. C. Kim, Y. B. Kim, “Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds,” Nucl. Eng. Technol., vol. 48, no. 1, pp. 228-235, 2016. doi: 10.1016/j.net.2015.10.011

[15] T. Diffraction and L. E. Ginzel, “Photoelastic Visualisation _ Phased Array Sound Fields,” e-Journal Nondestruct. Test., vol. 20, no. 1, pp. 1-8, 2016.

[16] Y. Fu, J. Wu, Z. Liu, R. Wang, B. Jiang, W. Wen, “Phased array ultrasonic test of vertical defect on butt-joint weld of CFETR vacuum vessel port stub,” Fusion Eng. Des., vol. 141, pp. 1-8, 2019. doi: 10.1016/j.fusengdes.2019.02.010

[17] J. Brizuela, J. Camacho, G. Cosarinsky, J. M. Iriarte, J. F. Cruza, “Improving elevation resolution in phased-array inspections for NDT,” NDT & E Int., vol. 101, pp. 1-16, 2019. doi: 10.1016/j.ndteint.2018.09.002

[18] S. Hill, S. Dixon, “Localisation of defects with time and frequency measurements using pulsed arrays,” NDT & E Int., vol. 67, pp. 24-30, 2014. doi: 10.1016/j.ndteint.2014.06.008

[19] J. H. Kurz, A. Jüngert, S. Dugan, G. Dobmann, C. Boller, “Reliability considerations of NDT by probability of detection (POD) determination using ultrasound phased array,” Eng. Fail. Anal., vol. 35, pp. 609-617, 2013. doi: 10.1016/j.engfailanal.2013.06.008

[20] J. Carignan, M. Despaux, F. Lachance, P. Rioux, “Sensitivity Response of Total Focusing Method (TFM) for Weld Inspection Versus Other Techniques FMC / TFM Glossary,” in CINDE 2019.

[21] A. Koskinen, E. Leskel, “Phased Array Ultrasonic Sizing Performance on Artificially Produced Fatigue Cracks in Austenitic Stainless Steel Weld,” in 12th International Conference on Non Destructive Evaluation in Relation to Structural Integrity for Nuclear and Pressurized Components, Dubrovnik, Croatia, 2018.