Tratamientos de reciclaje aplicados al residuo de espuma rígida de poliuretano (PUR): Artículo de revisión
Publicado 2024-11-25
Palabras clave
- Espuma rígida de poliuretano,
- reciclaje,
- polímeros,
- tratamientos,
- contaminación
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
La espuma rígida de Poliuretano es un material sintético que se genera mediante la reacción entre un poliol y un isocianato, que cuenta con excelentes propiedades termoaislantes; sus aplicaciones generan un residuo, el cual es considerado en Colombia, como un residuo peligroso. Por tal motivo, el presente artículo consiste en una revisión bibliográfica sobre las diferentes metodologías de reciclaje aplicados para el residuo de espuma rígida de poliuretano (PUR). Se expondrán alternativas desde el ámbito de reciclaje químico, mecánico y de recuperación de energía o térmicos, incluyendo además tratamientos de índole biológico. A partir de los reportes de la literatura se evidencia que el reciclaje mecánico se destaca por su simple aplicación y bajos costos. Por otro lado, el tratamiento químico ofrece más alternativas para la incorporación de ciertos productos a líneas de producción; sin embargo, se dificulta la alta tecnología necesaria para su aplicación. Situación similar a los tratamientos biológicos, cuyo ciclo de vida de los microorganismos es fundamental para su aplicación. Mientras la recuperación de energía o tratamientos térmicos presentan una buena oportunidad de energía sostenible, no obstante, sus emisiones son un factor a vigilar. Todas las alternativas de reciclaje permiten generar una economía circular sostenible en el tiempo, disminuyendo el impacto negativo del residuo sobre la salud de las personas y el medio ambiente.
Descargas
Referencias
- K. Skleničková, S. Abbrent, M. Halecký, V. Kočí, y H. Beneš, “Biodegradability and ecotoxicity of polyurethane foams: A review”, Critical Reviews in Environmental Science and Technology, vol. 52, n.o 2, pp. 157-202, 2022, doi: https://doi.org/10.1080/10643389.2020.1818496
- A. Magnin, L. Entzmann, E. Pollet, L. Avérous, “Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes”, Waste Management, vol. 132, pp. 23-30, 2021, doi: https://doi.org/10.1016/j.wasman.2021.07.011
- K. M. Zia, H. N. Bhatti, y I. Ahmad Bhatti, “Methods for polyurethane and polyurethane composites, recycling and recovery: A review”, Reactive and Functional Polymers, vol. 67, n.o 8, pp. 675-692, ago. 2007, doi: https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
- Y. Deng, R. Dewil, L. Appels, R. Ansart, J. Baeyens, y Q. Kang, “Reviewing the thermo-chemical recycling of waste polyurethane foam”, Journal of Environmental Management, vol. 278, p. 111527, ene. 2021, doi: https://doi.org/10.1016/j.jenvman.2020.111527
- J. Datta y P. Kopczyńska, “From polymer waste to potential main industrial products: Actual state of recycling and recovering”, Critical Reviews in Environmental Science and Technology, vol. 46, n.o 10, pp. 905-946, 2016, doi: https://doi.org/10.1080/10643389.2016.1180227
- J. P. da Costa, A. Avellan, C. Mouneyrac, A. Duarte, y T. Rocha-Santos, “Plastic additives and microplastics as emerging contaminants: Mechanisms and analytical assessment”, TrAC Trends in Analytical Chemistry, vol. 158, p. 116898, ene. 2023, doi: https://doi.org/10.1016/j.trac.2022.116898
- N. Gama, A. Ferreira, y A. Barros-Timmons, “Polyurethane Foams: Past, Present, and Future”, Materials, vol. 11, no. 10, p. 1841, 2018, doi: https://doi.org/10.3390/ma11101841
- J. E. Báez, “El crecimiento en los extremos: reactividad de grupos terminales en polímeros para la síntesis de copolímeros bloque”, Educación Química, vol. 27, n.o 2, pp. 97-104, 2016, doi: https://doi.org/10.1016/j.eq.2015.11.001
- T. Tiso et al., “The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future”, Metabolic Engineering, vol. 71, pp. 77-98, may 2022, doi: https://doi.org/10.1016/j.ymben.2021.12.006
- J. Liu et al., “Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects”, Biotechnology Advances, vol. 48, p. 107730, may 2021, doi: https://doi.org/10.1016/j.biotechadv.2021.107730
- J.-H. Kim, S. H. Choi, M. G. Park, D. H. Park, K.-H. Son, y H.-Y. Park, “Biodegradation of polyurethane by Japanese carpenter bee gut-associated symbionts Xanthomonas sp. HY-71, and its potential application on bioconversion”, Environmental Technology & Innovation, vol. 28, p. 102822, 2022, doi: https://doi.org/10.1016/j.eti.2022.102822
- S. P. Singh, P. Sharma, A. Bano, A. K. Nadda, y S. Varjani, “Microbial communities in plastisphere and free-living microbes for microplastic degradation: A comprehensive review”, Green Analytical Chemistry, vol. 3, p. 100030, 2022, doi: https://doi.org/10.1016/j.greeac.2022.100030
- A. Magnin, E. Pollet, V. Phalip, y L. Avérous, “Evaluation of biological degradation of polyurethanes”, Biotechnology Advances, vol. 39, p. 107457, 2020, doi: https://doi.org/10.1016/j.biotechadv.2019.107457
- R. Martens y K. H. Domsch, “Microbial degradation of polyurethane foams and isocyanate based polyureas in different media”, Water Air Soil Pollut, vol. 15, n.o 4, pp. 503-509, 1981, doi: https://doi.org/10.1007/BF00279430
- M. S. Usha, M. K. Sanjay, S. M. Gaddad, y C. T. Shivannavar, “Degradation of h-acid by free and immobilized cells of Alcaligenes latus”, Braz. J. Microbiol., vol. 41, n.o 4, pp. 931-945, 2010, doi: https://doi.org/10.1590/S1517-83822010000400012
- L. Ren, Z. Tang, J. Du, L. Chen, y T. Qiang, “Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue”, Journal of Hazardous Materials, vol. 417, p. 126130, 2021, doi: https://doi.org/10.1016/j.jhazmat.2021.126130
- A. Mazuelos, N. Iglesias-Gonzalez, C. Montes-Rosua, A. Romero-Garcia, R. Romero, y F. Carranza, “Polyurethane foam as biomass support for removal of thiosalts from flotation process water”, Minerals Engineering, vol. 169, p. 106940, ago. 2021, doi: https://doi.org/10.1016/j.mineng.2021.106940
- W. A. Botello Suárez, J. C. Ortiz Varón, y S. A. Peña Perea, “Inmovilización microbiana en polímeros sintéticos para el tratamiento de aguas residuales”, nova, vol. 14, n.o 26, p. 93, 2016, doi: https://doi.org/10.22490/24629448.1755
- I. Amundarain, R. Miguel-Fernández, A. Asueta, S. García-Fernández, y S. Arnaiz, “Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams”, Polymers, vol. 14, n.o 6, p. 1157, 2022, doi: https://doi.org/10.3390/polym14061157
- L. Polo Fonseca et al., “Reducing the carbon footprint of polyurethanes by chemical and biological depolymerization: Fact or fiction?”, Current Opinion in Green and Sustainable Chemistry, vol. 41, p. 100802, 2023, doi: https://doi.org/10.1016/j.cogsc.2023.100802
- K. Zhang et al., “Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1”, Journal of Hazardous Materials, vol. 437, p. 129406, 2022, doi: https://doi.org/10.1016/j.jhazmat.2022.129406
- C. R. Newman y D. Forciniti, “Modeling the Ultraviolet Photodegradation of Rigid Polyurethane Foams”, Ind. Eng. Chem. Res., vol. 40, n.o 15, pp. 3346-3352, 2001, doi: https://doi.org/10.1021/ie0009738
- X. Gu, S. Lyu, y S. Liu, “Alcoholysis of Waste Polyurethane Rigid Foam and Its Modification with Lignin for Recovery”, Journal of Renewable Materials, vol. 9, n.o 11, pp. 1913-1926, 2021.
- X. Wang, H. Chen, C. Chen, y H. Li, “Chemical degradation of thermoplastic polyurethane for recycling polyether polyol”, Fibers Polym, vol. 12, n.o 7, pp. 857-863, 2011, doi: https://doi.org/10.1007/s12221-011-0857-y
- X. Gu, X. Wang, X. Guo, S. Liu, C. Lou, y Y. Liu, “Study on Efficient Degradation of Waste PU Foam”, Polymers, vol. 15, n.o 10, p. 2359, 2023, doi: https://doi.org/10.3390/polym15102359
- T. Vanbergen, I. Verlent, J. De Geeter, B. Haelterman, L. Claes, y D. De Vos, “Recycling of Flexible Polyurethane Foam by Split-Phase Alcoholysis: Identification of Additives and Alcoholyzing Agents to Reach Higher Efficiencies”, ChemSusChem, vol. 13, n.o 15, pp. 3835-3843, 2020, doi: https://doi.org/10.1002/cssc.202000949
- T. Fukaya, H. Watando, S. Fujieda, S. Saya, C. M. Thai, y M. Yamamoto, “Reheating decomposition process as chemical recycling for rigid polyurethane foam”, Polymer Degradation and Stability, vol. 91, n.o 11, pp. 2549-2553, 2006, doi: https://doi.org/10.1016/j.polymdegradstab.2006.05.011
- P.-H. Lin, C.-H. Ko, F.-C. Chang, S.-H. Tu, y C.-J. Lin, “Oxidation behavior and decomposition kinetics of mixed-waste biomass material”, BioRes, vol. 18, n.o 1, pp. 778-791, 2022, doi: https://doi.org/10.15376/biores.18.1.778-791
- M. M. Alavi Nikje y K. M. Tavassoli, “Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method”, CCL, vol. 1, n.o 4, pp. 175-180, abr. 2012, doi: https://doi.org/10.5267/j.ccl.2012.7.002
- M. M. A. Nikje y M. Nikrah, “Chemical Recycling and Liquefaction of Rigid Polyurethane Foam Wastes through Microwave Assisted Glycolysis Process”, Journal of Macromolecular Science, Part A, vol. 44, n.o 6, pp. 613-617, abr. 2007, doi: https://doi.org/10.1080/10601320701285003
- A. Aguado, L. Martínez, A. Moral, J. Fermoso, y R. Irusta, “Chemical Recycling of Polyurethane Foam Waste Via Glycolysis”, Chemical Engineering Transactions, vol. 24, may 2011, doi: https://doi.org/10.3303/CET1124179
- C. Molero, A. de Lucas, y J. F. Rodríguez, “Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts”, Polymer Degradation and Stability, vol. 91, n.o 4, pp. 894-901, abr. 2006, doi: https://doi.org/10.1016/j.polymdegradstab.2005.06.023
- A. Sheel y D. Pant, “6 - Chemical Depolymerization of Polyurethane Foams via Glycolysis and Hydrolysis”, en Recycling of Polyurethane Foams, S. Thomas, A. V. Rane, K. Kanny, A. V.k., y M. G. Thomas, Eds., en Plastics Design Library, William Andrew Publishing, 2018, pp. 67-75, doi: https://doi.org/10.1016/B978-0-323-51133-9.00006-1
- P. Zahedifar, L. Pazdur, C. Vande Velde, y P. Billen, “Multistage Chemical Recycling of Polyurethanes and Dicarbamates: A Glycolysis–Hydrolysis Demonstration”, Sustainability, vol. 13, p. 3583, mar. 2021, doi: https://doi.org/10.3390/su13063583
- T. Takamoto, H. Shirasaka, H. Uyama, y S. Kobayashi, “Lipase-Catalyzed Hydrolytic Degradation of Polyurethane in Organic Solvent”, Chem. Lett., vol. 30, n.o 6, pp. 492-493, 2001, doi: https://doi.org/10.1246/cl.2001.492
- S. Matsumura, Y. Soeda, y K. Toshima, “Perspectives for synthesis and production of polyurethanes and related polymers by enzymes directed toward green and sustainable chemistry”, Appl Microbiol Biotechnol, vol. 70, n.o 1, pp. 12-20, 2006, doi: https://doi.org/10.1007/s00253-005-0269-2
- K. Kanaya y S. Takahashi, “Decomposition of polyurethane foams by alkanolamines”, J. Appl. Polym. Sci., vol. 51, n.o 4, pp. 675-682, ene. 1994, doi: https://doi.org/10.1002/app.1994.070510412
- N. Saikia y J. de Brito, “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review”, Construction and Building Materials, vol. 34, pp. 385-401, sep. 2012, doi: https://doi.org/10.1016/j.conbuildmat.2012.02.066
- T. Tantisattayakul, P. Kanchanapiya, y P. Methacanon, “Comparative waste management options for rigid polyurethane foam waste in Thailand”, Journal of Cleaner Production, vol. 196, pp. 1576-1586, sep. 2018, doi: https://doi.org/10.1016/j.jclepro.2018.06.166
- L. Ramon Roque da Silva, F. Cirino Gaspar, P. Cesar Gonçalves, V. Claret dos Santos, M. de Lourdes Noronha Motta Melo, y G. Ferreira Gomes, “An experimental dynamic study of cement mortar with polyurethane residues and foundry sand”, Engineering Structures, vol. 274, p. 115107, ene. 2023, doi: https://doi.org/10.1016/j.engstruct.2022.115107
- R. Briones-Llorente, R. Barbosa, M. Almeida, E. A. Montero García, y Á. Rodríguez Saiz, “Ecological Design of New Efficient Energy-Performance Construction Materials with Rigid Polyurethane Foam Waste”, Polymers, vol. 12, n.o 5, p. 1048, 2020, doi: https://doi.org/10.3390/polym12051048
- H. A. Abdel‐Rahman, M. M. Younes, y M. M. Khattab, “Recycling of polyurethane foam waste in the production of lightweight cement pastes and its irradiated polymer impregnated composites”, J Vinyl Addit Technol, vol. 25, n.o 4, pp. 328-338, 2019, doi: https://doi.org/10.1002/vnl.21698
- I. Santamaría Vicario, L. Alameda Cuenca-Romero, S. Gutiérrez González, V. Calderón Carpintero, y Á. Rodríguez Saiz, “Design and Characterization of Gypsum Mortars Dosed with Polyurethane Foam Waste PFW”, Materials, vol. 13, n.o 7, p. 1497, 2020, doi: https://doi.org/10.3390/ma13071497
- C. Junco, J. Gadea, A. Rodríguez, S. Gutiérrez-González, y V. Calderón, “Durability of lightweight masonry mortars made with white recycled polyurethane foam”, Cement and Concrete Composites, vol. 34, n.o 10, pp. 1174-1179, 2012, doi: https://doi.org/10.1016/j.cemconcomp.2012.07.006
- J. Gadea, A. Rodríguez, P. L. Campos, J. Garabito, y V. Calderón, “Lightweight mortar made with recycled polyurethane foam”, Cement and Concrete Composites, vol. 32, n.o 9, pp. 672-677, 2010, doi: https://doi.org/10.1016/j.cemconcomp.2010.07.017
- L. A. Cuenca-Romero, R. Arroyo, Á. Alonso, S. Gutiérrez-González, y V. Calderón, “Characterization properties and fire behaviour of cement blocks with recycled polyurethane roof wastes”, Journal of Building Engineering, vol. 50, p. 104075, 2022, doi: https://doi.org/10.1016/j.jobe.2022.104075
- C. Yang, Z.-H. Zhuang, y Z.-G. Yang, “Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam”, J. Appl. Polym. Sci., vol. 131, n.o 1, 2014, doi: https://doi.org/10.1002/app.39734
- C. Junco, A. Rodríguez, V. Calderón, C. Muñoz-Rupérez, y S. Gutiérrez-González, “Fatigue durability test of mortars incorporating polyurethane foam wastes”, Construction and Building Materials, vol. 190, pp. 373-381, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.09.161
- R. Gómez-Rojo, L. Alameda, Á. Rodríguez, V. Calderón, y S. Gutiérrez-González, “Characterization of Polyurethane Foam Waste for Reuse in Eco-Efficient Building Materials”, Polymers, vol. 11, n.o 2, p. 359, 2019, doi: https://doi.org/10.3390/polym11020359
- T. Calvo-Correas, L. Ugarte, I. Larraza, C. Peña-Rodríguez, M. A. Corcuera, y A. Eceiza, “Residues from rigid foams and graphene for the synthesis of hybrid polyurethane flexible foams composites”, Journal of Materials Research and Technology, vol. 12, pp. 2128-2137, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.04.022
- L. Bergamonti, R. Taurino, L. Cattani, D. Ferretti, y F. Bondioli, “Lightweight hybrid organic-inorganic geopolymers obtained using polyurethane waste”, Construction and Building Materials, vol. 185, pp. 285-292, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.07.006
- Z. Yao et al., “Probing the combustion and pyrolysis behaviors of polyurethane foam from waste refrigerators”, J Therm Anal Calorim, vol. 141, n.o 3, pp. 1137-1148, 2020, doi: https://doi.org/10.1007/s10973-019-09086-8
- L. Jiang et al., “Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS”, Fuel, vol. 222, pp. 11-20, 2018, doi: https://doi.org/10.1016/j.fuel.2018.02.143
- L. Jiao, H. Xiao, Q. Wang, y J. Sun, “Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS”, Polymer Degradation and Stability, vol. 98, n.o 12, pp. 2687-2696, 2013, doi: https://doi.org/10.1016/j.polymdegradstab.2013.09.032
- H. Stančin et al., “Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis”, Energy, vol. 237, p. 121592, 2021, doi: https://doi.org/10.1016/j.energy.2021.121592
- Z. Yao, S. Yu, W. Su, W. Wu, J. Tang, y W. Qi, “Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators”, Waste Manag Res, vol. 38, n.o 3, pp. 271-278, 2019, doi: https://doi.org/10.1177/0734242X19877682
- A. Eschenbacher, R. J. Varghese, J. Weng, y K. M. Van Geem, “Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling”, Journal of Analytical and Applied Pyrolysis, vol. 160, p. 105374, 2021, doi: https://doi.org/10.1016/j.jaap.2021.105374
- X. Guo, L. Wang, L. Zhang, S. Li, y J. Hao, “Nitrogenous emissions from the catalytic pyrolysis of waste rigid polyurethane foam”, Journal of Analytical and Applied Pyrolysis, vol. 108, pp. 143-150, 2014, doi: https://doi.org/10.1016/j.jaap.2014.05.006
- X. Guo, N. Li, y T. Zhang, “Preparation of hydrogen‑rich gas from waste polyurethane foam by steam gasification and catalytic reforming in a two‑stage fixed bed reactor”, Journal of Material Cycles and Waste Management, 2021, doi: https://doi.org/10.1007/s10163-021-01268-7
- X. Guo, Z. Song, y W. Zhang, “Production of hydrogen-rich gas from waste rigid polyurethane foam via catalytic steam gasification”, Waste Manag Res, vol. 38, n.o 7, pp. 802-811, 2020, doi: https://doi.org/10.1177/0734242X19899710
- X. Guo, W. Zhang, L. Wang, y J. Hao, “Comparative study of nitrogen migration among the products from catalytic pyrolysis and gasification of waste rigid polyurethane foam”, Journal of Analytical and Applied Pyrolysis, vol. 120, pp. 144-153, 2016, doi: https://doi.org/10.1016/j.jaap.2016.04.018
- X. Guo, L. Wang, S. Li, X. Tang, y J. Hao, “Gasification of waste rigid polyurethane foam: optimizing operational conditions”, J Mater Cycles Waste Manag, vol. 17, n.o 3, pp. 560-565, 2015, doi: https://doi.org/10.1007/s10163-014-0281-7
- R. Hasanzadeh, M. Mojaver, T. Azdast, y C. B. Park, “A novel systematic multi-objective optimization to achieve high-efficiency and low-emission waste polymeric foam gasification using response surface methodology and TOPSIS method”, Chemical Engineering Journal, vol. 430, p. 132958, 2022, doi: https://doi.org/10.1016/j.cej.2021.132958