Vol. 23 Núm. 4 (2024): Revista UIS Ingenierías
Artículos

Tratamientos de reciclaje aplicados al residuo de espuma rígida de poliuretano (PUR): Artículo de revisión

Isabella López-Rodríguez
Universidad Nacional de Colombia
Joseph Alejandro Diaz-Saavedra
Universidad Nacional de Colombia
Janneth Torres- Agredo
Universidad Nacional de Colombia

Publicado 2024-11-25

Palabras clave

  • Espuma rígida de poliuretano,
  • reciclaje,
  • polímeros,
  • tratamientos,
  • contaminación

Cómo citar

López-Rodríguez , I. ., Diaz-Saavedra , J. A. ., & Torres- Agredo, J. (2024). Tratamientos de reciclaje aplicados al residuo de espuma rígida de poliuretano (PUR): Artículo de revisión . Revista UIS Ingenierías, 23(4), 99–112. https://doi.org/10.18273/revuin.v23n4-2024008

Resumen

La espuma rígida de Poliuretano es un material sintético que se genera mediante la reacción entre un poliol y un isocianato, que cuenta con excelentes propiedades termoaislantes; sus aplicaciones generan un residuo, el cual es considerado en Colombia, como un residuo peligroso. Por tal motivo, el presente artículo consiste en una revisión bibliográfica sobre las diferentes metodologías de reciclaje aplicados para el residuo de espuma rígida de poliuretano (PUR). Se expondrán alternativas desde el ámbito de reciclaje químico, mecánico y de recuperación de energía o térmicos, incluyendo además tratamientos de índole biológico. A partir de los reportes de la literatura se evidencia que el reciclaje mecánico se destaca por su simple aplicación y bajos costos. Por otro lado, el tratamiento químico ofrece más alternativas para la incorporación de ciertos productos a líneas de producción; sin embargo, se dificulta la alta tecnología necesaria para su aplicación. Situación similar a los tratamientos biológicos, cuyo ciclo de vida de los microorganismos es fundamental para su aplicación.  Mientras la recuperación de energía o tratamientos térmicos presentan una buena oportunidad de energía sostenible, no obstante, sus emisiones son un factor a vigilar. Todas las alternativas de reciclaje permiten generar una economía circular sostenible en el tiempo, disminuyendo el impacto negativo del residuo sobre la salud de las personas y el medio ambiente.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. K. Skleničková, S. Abbrent, M. Halecký, V. Kočí, y H. Beneš, “Biodegradability and ecotoxicity of polyurethane foams: A review”, Critical Reviews in Environmental Science and Technology, vol. 52, n.o 2, pp. 157-202, 2022, doi: https://doi.org/10.1080/10643389.2020.1818496
  2. A. Magnin, L. Entzmann, E. Pollet, L. Avérous, “Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes”, Waste Management, vol. 132, pp. 23-30, 2021, doi: https://doi.org/10.1016/j.wasman.2021.07.011
  3. K. M. Zia, H. N. Bhatti, y I. Ahmad Bhatti, “Methods for polyurethane and polyurethane composites, recycling and recovery: A review”, Reactive and Functional Polymers, vol. 67, n.o 8, pp. 675-692, ago. 2007, doi: https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
  4. Y. Deng, R. Dewil, L. Appels, R. Ansart, J. Baeyens, y Q. Kang, “Reviewing the thermo-chemical recycling of waste polyurethane foam”, Journal of Environmental Management, vol. 278, p. 111527, ene. 2021, doi: https://doi.org/10.1016/j.jenvman.2020.111527
  5. J. Datta y P. Kopczyńska, “From polymer waste to potential main industrial products: Actual state of recycling and recovering”, Critical Reviews in Environmental Science and Technology, vol. 46, n.o 10, pp. 905-946, 2016, doi: https://doi.org/10.1080/10643389.2016.1180227
  6. J. P. da Costa, A. Avellan, C. Mouneyrac, A. Duarte, y T. Rocha-Santos, “Plastic additives and microplastics as emerging contaminants: Mechanisms and analytical assessment”, TrAC Trends in Analytical Chemistry, vol. 158, p. 116898, ene. 2023, doi: https://doi.org/10.1016/j.trac.2022.116898
  7. N. Gama, A. Ferreira, y A. Barros-Timmons, “Polyurethane Foams: Past, Present, and Future”, Materials, vol. 11, no. 10, p. 1841, 2018, doi: https://doi.org/10.3390/ma11101841
  8. J. E. Báez, “El crecimiento en los extremos: reactividad de grupos terminales en polímeros para la síntesis de copolímeros bloque”, Educación Química, vol. 27, n.o 2, pp. 97-104, 2016, doi: https://doi.org/10.1016/j.eq.2015.11.001
  9. T. Tiso et al., “The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future”, Metabolic Engineering, vol. 71, pp. 77-98, may 2022, doi: https://doi.org/10.1016/j.ymben.2021.12.006
  10. J. Liu et al., “Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects”, Biotechnology Advances, vol. 48, p. 107730, may 2021, doi: https://doi.org/10.1016/j.biotechadv.2021.107730
  11. J.-H. Kim, S. H. Choi, M. G. Park, D. H. Park, K.-H. Son, y H.-Y. Park, “Biodegradation of polyurethane by Japanese carpenter bee gut-associated symbionts Xanthomonas sp. HY-71, and its potential application on bioconversion”, Environmental Technology & Innovation, vol. 28, p. 102822, 2022, doi: https://doi.org/10.1016/j.eti.2022.102822
  12. S. P. Singh, P. Sharma, A. Bano, A. K. Nadda, y S. Varjani, “Microbial communities in plastisphere and free-living microbes for microplastic degradation: A comprehensive review”, Green Analytical Chemistry, vol. 3, p. 100030, 2022, doi: https://doi.org/10.1016/j.greeac.2022.100030
  13. A. Magnin, E. Pollet, V. Phalip, y L. Avérous, “Evaluation of biological degradation of polyurethanes”, Biotechnology Advances, vol. 39, p. 107457, 2020, doi: https://doi.org/10.1016/j.biotechadv.2019.107457
  14. R. Martens y K. H. Domsch, “Microbial degradation of polyurethane foams and isocyanate based polyureas in different media”, Water Air Soil Pollut, vol. 15, n.o 4, pp. 503-509, 1981, doi: https://doi.org/10.1007/BF00279430
  15. M. S. Usha, M. K. Sanjay, S. M. Gaddad, y C. T. Shivannavar, “Degradation of h-acid by free and immobilized cells of Alcaligenes latus”, Braz. J. Microbiol., vol. 41, n.o 4, pp. 931-945, 2010, doi: https://doi.org/10.1590/S1517-83822010000400012
  16. L. Ren, Z. Tang, J. Du, L. Chen, y T. Qiang, “Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue”, Journal of Hazardous Materials, vol. 417, p. 126130, 2021, doi: https://doi.org/10.1016/j.jhazmat.2021.126130
  17. A. Mazuelos, N. Iglesias-Gonzalez, C. Montes-Rosua, A. Romero-Garcia, R. Romero, y F. Carranza, “Polyurethane foam as biomass support for removal of thiosalts from flotation process water”, Minerals Engineering, vol. 169, p. 106940, ago. 2021, doi: https://doi.org/10.1016/j.mineng.2021.106940
  18. W. A. Botello Suárez, J. C. Ortiz Varón, y S. A. Peña Perea, “Inmovilización microbiana en polímeros sintéticos para el tratamiento de aguas residuales”, nova, vol. 14, n.o 26, p. 93, 2016, doi: https://doi.org/10.22490/24629448.1755
  19. I. Amundarain, R. Miguel-Fernández, A. Asueta, S. García-Fernández, y S. Arnaiz, “Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams”, Polymers, vol. 14, n.o 6, p. 1157, 2022, doi: https://doi.org/10.3390/polym14061157
  20. L. Polo Fonseca et al., “Reducing the carbon footprint of polyurethanes by chemical and biological depolymerization: Fact or fiction?”, Current Opinion in Green and Sustainable Chemistry, vol. 41, p. 100802, 2023, doi: https://doi.org/10.1016/j.cogsc.2023.100802
  21. K. Zhang et al., “Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1”, Journal of Hazardous Materials, vol. 437, p. 129406, 2022, doi: https://doi.org/10.1016/j.jhazmat.2022.129406
  22. C. R. Newman y D. Forciniti, “Modeling the Ultraviolet Photodegradation of Rigid Polyurethane Foams”, Ind. Eng. Chem. Res., vol. 40, n.o 15, pp. 3346-3352, 2001, doi: https://doi.org/10.1021/ie0009738
  23. X. Gu, S. Lyu, y S. Liu, “Alcoholysis of Waste Polyurethane Rigid Foam and Its Modification with Lignin for Recovery”, Journal of Renewable Materials, vol. 9, n.o 11, pp. 1913-1926, 2021.
  24. X. Wang, H. Chen, C. Chen, y H. Li, “Chemical degradation of thermoplastic polyurethane for recycling polyether polyol”, Fibers Polym, vol. 12, n.o 7, pp. 857-863, 2011, doi: https://doi.org/10.1007/s12221-011-0857-y
  25. X. Gu, X. Wang, X. Guo, S. Liu, C. Lou, y Y. Liu, “Study on Efficient Degradation of Waste PU Foam”, Polymers, vol. 15, n.o 10, p. 2359, 2023, doi: https://doi.org/10.3390/polym15102359
  26. T. Vanbergen, I. Verlent, J. De Geeter, B. Haelterman, L. Claes, y D. De Vos, “Recycling of Flexible Polyurethane Foam by Split-Phase Alcoholysis: Identification of Additives and Alcoholyzing Agents to Reach Higher Efficiencies”, ChemSusChem, vol. 13, n.o 15, pp. 3835-3843, 2020, doi: https://doi.org/10.1002/cssc.202000949
  27. T. Fukaya, H. Watando, S. Fujieda, S. Saya, C. M. Thai, y M. Yamamoto, “Reheating decomposition process as chemical recycling for rigid polyurethane foam”, Polymer Degradation and Stability, vol. 91, n.o 11, pp. 2549-2553, 2006, doi: https://doi.org/10.1016/j.polymdegradstab.2006.05.011
  28. P.-H. Lin, C.-H. Ko, F.-C. Chang, S.-H. Tu, y C.-J. Lin, “Oxidation behavior and decomposition kinetics of mixed-waste biomass material”, BioRes, vol. 18, n.o 1, pp. 778-791, 2022, doi: https://doi.org/10.15376/biores.18.1.778-791
  29. M. M. Alavi Nikje y K. M. Tavassoli, “Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method”, CCL, vol. 1, n.o 4, pp. 175-180, abr. 2012, doi: https://doi.org/10.5267/j.ccl.2012.7.002
  30. M. M. A. Nikje y M. Nikrah, “Chemical Recycling and Liquefaction of Rigid Polyurethane Foam Wastes through Microwave Assisted Glycolysis Process”, Journal of Macromolecular Science, Part A, vol. 44, n.o 6, pp. 613-617, abr. 2007, doi: https://doi.org/10.1080/10601320701285003
  31. A. Aguado, L. Martínez, A. Moral, J. Fermoso, y R. Irusta, “Chemical Recycling of Polyurethane Foam Waste Via Glycolysis”, Chemical Engineering Transactions, vol. 24, may 2011, doi: https://doi.org/10.3303/CET1124179
  32. C. Molero, A. de Lucas, y J. F. Rodríguez, “Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts”, Polymer Degradation and Stability, vol. 91, n.o 4, pp. 894-901, abr. 2006, doi: https://doi.org/10.1016/j.polymdegradstab.2005.06.023
  33. A. Sheel y D. Pant, “6 - Chemical Depolymerization of Polyurethane Foams via Glycolysis and Hydrolysis”, en Recycling of Polyurethane Foams, S. Thomas, A. V. Rane, K. Kanny, A. V.k., y M. G. Thomas, Eds., en Plastics Design Library, William Andrew Publishing, 2018, pp. 67-75, doi: https://doi.org/10.1016/B978-0-323-51133-9.00006-1
  34. P. Zahedifar, L. Pazdur, C. Vande Velde, y P. Billen, “Multistage Chemical Recycling of Polyurethanes and Dicarbamates: A Glycolysis–Hydrolysis Demonstration”, Sustainability, vol. 13, p. 3583, mar. 2021, doi: https://doi.org/10.3390/su13063583
  35. T. Takamoto, H. Shirasaka, H. Uyama, y S. Kobayashi, “Lipase-Catalyzed Hydrolytic Degradation of Polyurethane in Organic Solvent”, Chem. Lett., vol. 30, n.o 6, pp. 492-493, 2001, doi: https://doi.org/10.1246/cl.2001.492
  36. S. Matsumura, Y. Soeda, y K. Toshima, “Perspectives for synthesis and production of polyurethanes and related polymers by enzymes directed toward green and sustainable chemistry”, Appl Microbiol Biotechnol, vol. 70, n.o 1, pp. 12-20, 2006, doi: https://doi.org/10.1007/s00253-005-0269-2
  37. K. Kanaya y S. Takahashi, “Decomposition of polyurethane foams by alkanolamines”, J. Appl. Polym. Sci., vol. 51, n.o 4, pp. 675-682, ene. 1994, doi: https://doi.org/10.1002/app.1994.070510412
  38. N. Saikia y J. de Brito, “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review”, Construction and Building Materials, vol. 34, pp. 385-401, sep. 2012, doi: https://doi.org/10.1016/j.conbuildmat.2012.02.066
  39. T. Tantisattayakul, P. Kanchanapiya, y P. Methacanon, “Comparative waste management options for rigid polyurethane foam waste in Thailand”, Journal of Cleaner Production, vol. 196, pp. 1576-1586, sep. 2018, doi: https://doi.org/10.1016/j.jclepro.2018.06.166
  40. L. Ramon Roque da Silva, F. Cirino Gaspar, P. Cesar Gonçalves, V. Claret dos Santos, M. de Lourdes Noronha Motta Melo, y G. Ferreira Gomes, “An experimental dynamic study of cement mortar with polyurethane residues and foundry sand”, Engineering Structures, vol. 274, p. 115107, ene. 2023, doi: https://doi.org/10.1016/j.engstruct.2022.115107
  41. R. Briones-Llorente, R. Barbosa, M. Almeida, E. A. Montero García, y Á. Rodríguez Saiz, “Ecological Design of New Efficient Energy-Performance Construction Materials with Rigid Polyurethane Foam Waste”, Polymers, vol. 12, n.o 5, p. 1048, 2020, doi: https://doi.org/10.3390/polym12051048
  42. H. A. Abdel‐Rahman, M. M. Younes, y M. M. Khattab, “Recycling of polyurethane foam waste in the production of lightweight cement pastes and its irradiated polymer impregnated composites”, J Vinyl Addit Technol, vol. 25, n.o 4, pp. 328-338, 2019, doi: https://doi.org/10.1002/vnl.21698
  43. I. Santamaría Vicario, L. Alameda Cuenca-Romero, S. Gutiérrez González, V. Calderón Carpintero, y Á. Rodríguez Saiz, “Design and Characterization of Gypsum Mortars Dosed with Polyurethane Foam Waste PFW”, Materials, vol. 13, n.o 7, p. 1497, 2020, doi: https://doi.org/10.3390/ma13071497
  44. C. Junco, J. Gadea, A. Rodríguez, S. Gutiérrez-González, y V. Calderón, “Durability of lightweight masonry mortars made with white recycled polyurethane foam”, Cement and Concrete Composites, vol. 34, n.o 10, pp. 1174-1179, 2012, doi: https://doi.org/10.1016/j.cemconcomp.2012.07.006
  45. J. Gadea, A. Rodríguez, P. L. Campos, J. Garabito, y V. Calderón, “Lightweight mortar made with recycled polyurethane foam”, Cement and Concrete Composites, vol. 32, n.o 9, pp. 672-677, 2010, doi: https://doi.org/10.1016/j.cemconcomp.2010.07.017
  46. L. A. Cuenca-Romero, R. Arroyo, Á. Alonso, S. Gutiérrez-González, y V. Calderón, “Characterization properties and fire behaviour of cement blocks with recycled polyurethane roof wastes”, Journal of Building Engineering, vol. 50, p. 104075, 2022, doi: https://doi.org/10.1016/j.jobe.2022.104075
  47. C. Yang, Z.-H. Zhuang, y Z.-G. Yang, “Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam”, J. Appl. Polym. Sci., vol. 131, n.o 1, 2014, doi: https://doi.org/10.1002/app.39734
  48. C. Junco, A. Rodríguez, V. Calderón, C. Muñoz-Rupérez, y S. Gutiérrez-González, “Fatigue durability test of mortars incorporating polyurethane foam wastes”, Construction and Building Materials, vol. 190, pp. 373-381, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.09.161
  49. R. Gómez-Rojo, L. Alameda, Á. Rodríguez, V. Calderón, y S. Gutiérrez-González, “Characterization of Polyurethane Foam Waste for Reuse in Eco-Efficient Building Materials”, Polymers, vol. 11, n.o 2, p. 359, 2019, doi: https://doi.org/10.3390/polym11020359
  50. T. Calvo-Correas, L. Ugarte, I. Larraza, C. Peña-Rodríguez, M. A. Corcuera, y A. Eceiza, “Residues from rigid foams and graphene for the synthesis of hybrid polyurethane flexible foams composites”, Journal of Materials Research and Technology, vol. 12, pp. 2128-2137, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.04.022
  51. L. Bergamonti, R. Taurino, L. Cattani, D. Ferretti, y F. Bondioli, “Lightweight hybrid organic-inorganic geopolymers obtained using polyurethane waste”, Construction and Building Materials, vol. 185, pp. 285-292, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.07.006
  52. Z. Yao et al., “Probing the combustion and pyrolysis behaviors of polyurethane foam from waste refrigerators”, J Therm Anal Calorim, vol. 141, n.o 3, pp. 1137-1148, 2020, doi: https://doi.org/10.1007/s10973-019-09086-8
  53. L. Jiang et al., “Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS”, Fuel, vol. 222, pp. 11-20, 2018, doi: https://doi.org/10.1016/j.fuel.2018.02.143
  54. L. Jiao, H. Xiao, Q. Wang, y J. Sun, “Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS”, Polymer Degradation and Stability, vol. 98, n.o 12, pp. 2687-2696, 2013, doi: https://doi.org/10.1016/j.polymdegradstab.2013.09.032
  55. H. Stančin et al., “Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis”, Energy, vol. 237, p. 121592, 2021, doi: https://doi.org/10.1016/j.energy.2021.121592
  56. Z. Yao, S. Yu, W. Su, W. Wu, J. Tang, y W. Qi, “Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators”, Waste Manag Res, vol. 38, n.o 3, pp. 271-278, 2019, doi: https://doi.org/10.1177/0734242X19877682
  57. A. Eschenbacher, R. J. Varghese, J. Weng, y K. M. Van Geem, “Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling”, Journal of Analytical and Applied Pyrolysis, vol. 160, p. 105374, 2021, doi: https://doi.org/10.1016/j.jaap.2021.105374
  58. X. Guo, L. Wang, L. Zhang, S. Li, y J. Hao, “Nitrogenous emissions from the catalytic pyrolysis of waste rigid polyurethane foam”, Journal of Analytical and Applied Pyrolysis, vol. 108, pp. 143-150, 2014, doi: https://doi.org/10.1016/j.jaap.2014.05.006
  59. X. Guo, N. Li, y T. Zhang, “Preparation of hydrogen‑rich gas from waste polyurethane foam by steam gasification and catalytic reforming in a two‑stage fixed bed reactor”, Journal of Material Cycles and Waste Management, 2021, doi: https://doi.org/10.1007/s10163-021-01268-7
  60. X. Guo, Z. Song, y W. Zhang, “Production of hydrogen-rich gas from waste rigid polyurethane foam via catalytic steam gasification”, Waste Manag Res, vol. 38, n.o 7, pp. 802-811, 2020, doi: https://doi.org/10.1177/0734242X19899710
  61. X. Guo, W. Zhang, L. Wang, y J. Hao, “Comparative study of nitrogen migration among the products from catalytic pyrolysis and gasification of waste rigid polyurethane foam”, Journal of Analytical and Applied Pyrolysis, vol. 120, pp. 144-153, 2016, doi: https://doi.org/10.1016/j.jaap.2016.04.018
  62. X. Guo, L. Wang, S. Li, X. Tang, y J. Hao, “Gasification of waste rigid polyurethane foam: optimizing operational conditions”, J Mater Cycles Waste Manag, vol. 17, n.o 3, pp. 560-565, 2015, doi: https://doi.org/10.1007/s10163-014-0281-7
  63. R. Hasanzadeh, M. Mojaver, T. Azdast, y C. B. Park, “A novel systematic multi-objective optimization to achieve high-efficiency and low-emission waste polymeric foam gasification using response surface methodology and TOPSIS method”, Chemical Engineering Journal, vol. 430, p. 132958, 2022, doi: https://doi.org/10.1016/j.cej.2021.132958