Vol. 18 Núm. 1 (2019): Revista UIS Ingenierías
Artículos

Biomasa residual pecuaria: revisión sobre la digestión anaerobia como método de producción de energía y otros subproductos

David Leonardo Parra Ortiz
Suministros eléctricos y soluciones tecnológicas S.A.S. - SOLTEC-ING
Mónica Andrea Botero-Londoño
Universidad Industrial de Santander
Julián Mauricio Botero-Londoño
Universidad Industrial de Santander

Publicado 2019-01-01

Palabras clave

  • Biogás,
  • digestato,
  • digestión anaerobia

Cómo citar

Parra Ortiz, D. L., Botero-Londoño, M. A., & Botero-Londoño, J. M. (2019). Biomasa residual pecuaria: revisión sobre la digestión anaerobia como método de producción de energía y otros subproductos. Revista UIS Ingenierías, 18(1), 149–160. https://doi.org/10.18273/revuin.v18n1-2019013

Resumen

El biogás producido por la digestión anaerobia de residuos pecuarios es una solución para la sustitución de la biomasa tradicional usada en iluminación y calor. Su uso presenta ventajas como la mejora en la productividad de las fincas, la reducción del impacto ambiental y el rompimiento de la dependencia a los combustibles fósiles y agroquímicos. Sin embargo, aún se tiene poca difusión en las zonas rurales de Colombia, principalmente por el desconocimiento de las potencialidades y los beneficios. Por tal motivo, la presente revisión propone brindar una perspectiva de la digestión anaerobia desde los aspectos técnicos más relevantes, la importancia del sustrato y los tipos de biodigestores de bajo costo más comunes. Se concluye que es necesario mejorar las técnicas para hacerlas más asequibles y planear programas de financiación que permitan la expansión plena de la tecnología a pequeña y mediana escala.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

M. A. Mora Marín, L. Ríos Pescador, L. Ríos Ramos, y J. L. Almario Charry, “Impacto de la actividad ganadera sobre el suelo en Colombia”, Ing. y Región, vol. 17, p. 1, 2017.

W. Vergara Vergara, “La ganadería extensiva y el problema agrario. El reto de un modelo de desarrollo rural sustentable para Colombia”, Rev. Cienc. Anim., no 3, pp. 45–53, 2010.

A. Acosta, “Cambio climático y desarrollo pecuario: desafíos institucionales para el desarrollo sostenible de sistemas silvopastoriles en centroamérica”, en VI Congreso Latinoamericano de Agroforestería para la Producción Pecuaria Sostenible, Panamá. CATIE: Turrialba, Costa Rica, 2010.

L. Mahecha, L. A. Gallego, y F. J. Peláez, “Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad”, Rev. Colomb. Ciencias Pecu., vol. 15, no 2, pp. 213–225, 2002.

DANE, “Tercer Censo Nacional Agropecuario: Uso, cobertura y tenencia del suelo”, 2016.

M. Peters et al., “Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions”, Trop. Grasslands-Forrajes Trop., vol. 1, no 2, pp. 156–167, 2013.

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales, y C. De Haan, “Livestock’s Long Shadow: Environmental Issues and Options”, FAO ftp//ftp.fao.org/docrep/fao/010/A0701E/A0701E00.pdf, pp. 1–377, 2006.

E. Murgueitio, R. Barahona, J. D. Chará, M. X. Flores, R. M. Mauricio, y J. J. Molina, “The intensive silvopastoral systems in Latin America sustainable alternative to face climatic change in animal husbandry”, Cuba. J. Agricultural Sci., vol. 49, no 4, pp. 541–554, 2015.

M. Montagnini, “Restoration of degraded pastures using agrosilvopastoral systems with native trees in the neotropics”, en Agroforestry as a Tool for Landscape Restoration, 2011, pp. 55–68.

N. Sharma, B. Bohra, N. Pragya, R. Ciannella, P. Dobie, y S. Lehmann, “Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development”, Food Energy Secur., vol. 5, no 3, pp. 165–183, 2016.

OECD, “Bioheat, Biopower and Biogas. Developments and implications for agriculture”, Paris, 2010.

S. Bringezu, H. Schütz, M. O’Brien, L. Kauppi, R. W. Howarth, y J. McNeely, Towards sustainable production and use of resources: assessing biofuels. Chatelaine: United Nations Environment Programme (UNEP), 2009.

T. Abbasi, S. M. Tauseef, y S. A. Abbasi, Biogas Energy. 2012.

A. Wellinger, J. Murphy, y D. Baxter, The Biogas Handbook: Science, Production and Applications. 2013.

M. M. T. Varnero, “Manual de biogás. Gobierno de Chile. Programa de las Naciones Unidas para el Desarrollo, Organización de las Naciones Unidas para la Alimentación y la Agricultura. Global Environment Facility”, Proyecto CHI/00, 2011.

S. Ruile, S. Schmitz, M. Mönch-Tegeder, y H. Oechsner, “Degradation efficiency of agricultural biogas plants - A full-scale study”, Bioresour. Technol., vol. 178, pp. 341–349, 2015.

L. Naik, Z. Gebreegziabher, V. Tumwesige, B. B. Balana, J. Mwirigi, y G. Austin, “Factors determining the stability and productivity of small scale anaerobic digesters”, Biomass and Bioenergy, vol. 70, pp. 51–57, 2014.

K. Rajendran, S. Aslanzadeh, y M. J. Taherzadeh, “Household biogas digesters-A review”, Energies, vol. 5, no 8. pp. 2911–2942, 2012.

Z. Zhang, G. Zhang, W. Li, C. Li, y G. Xu, “Enhanced biogas production from sorghum stem by co-digestion with cow manure”, Int. J. Hydrogen Energy, vol. 41, no 21, pp. 9153–9158, 2016.

S. Zareei y J. Khodaei, “Modeling and optimization of biogas production from cow manure and maize straw using an adaptive neuro-fuzzy inference system”, Renew. Energy, vol. 114, no PB, pp. 423–427, 2017.

L. Lijó, Y. Lorenzo-Toja, S. González-García, J. Bacenetti, M. Negri, y M. T. Moreira, “Eco-efficiency assessment of farm-scaled biogas plants”, Bioresour. Technol., vol. 237, pp. 146–155, 2017.

F. Tasnim, S. A. Iqbal, y A. R. Chowdhury, “Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth”, Renew. Energy, vol. 109, pp. 434–439, 2017.

S. Fang, L. Ping, Z. Yang, y J. Mao, “A review of different pretreatment techniques for enhancing biogas production”, ICMREE2011 - Proc. 2011 Int. Conf. Mater. Renew. Energy Environ., vol. 1, no 0, pp. 263–266, 2011.

W. Uddin et al., “Biogas potential for electric power generation in Pakistan: A survey”, Renewable and Sustainable Energy Reviews, vol. 54. Elsevier, pp. 25–33, 2016.

T. Perrigault, V. Weatherford, J. Martí-Herrero, y D. Poggio, “Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model”, Bioresour. Technol., vol. 124, pp. 259–268, 2012.

T. A. Seadi et al., Biogas Handbook, no 1. 2008.

F. Monlau, P. Kaparaju, E. Trably, J. P. Steyer, y H. Carrere, “Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: Mass, energy and economical balances”, Chem. Eng. J., vol. 260, pp. 377–385, 2015.

H. Wang y H.-T. Wang, “Digestibility improvement of aspen leaf with alkaline hydrothermal pretreatment”, Zhongguo Huanjing Kexue/China Environ. Sci., vol. 29, no 2, 2009.

Y. Liu et al., “Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw”, Bioresour. Technol., vol. 244, no 30, pp. 445–451, 2017.

J. Martí-Herrero, R. Alvarez, M. R. Rojas, L. Aliaga, R. Céspedes, y J. Carbonell, “Improvement through low cost biofilm carrier in anaerobic tubular digestion in cold climate regions”, Bioresour. Technol., vol. 167, pp. 87–93, 2014.

M. Garfí, J. Martí-Herrero, A. Garwood, y I. Ferrer, “Household anaerobic digesters for biogas production in Latin America: A review”, Renew. Sustain. Energy Rev., vol. 60, pp. 599–614, 2016.

K. C. Surendra, D. Takara, A. G. Hashimoto, y S. K. Khanal, “Biogas as a sustainable energy source for developing countries: Opportunities and challenges”, Renew. Sustain. Energy Rev., vol. 31, pp. 846–859, 2014.

J. Martí-Herrero et al., “Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia”, Renew. Energy, vol. 71, no June 2014, pp. 156–165, 2014.

A. Yasar, S. Nazir, R. Rasheed, A. B. Tabinda, y M. Nazar, “Economic review of different designs of biogas plants at household level in Pakistan”, Renew. Sustain. Energy Rev., vol. 74, no December 2015, pp. 221–229, 2017.

I. Ferrer, M. Garfí, E. Uggetti, L. Ferrer-Martí, A. Calderón, y E. Velo, “Biogas production in low-cost household digesters at the Peruvian Andes”, Biomass and Bioenergy, vol. 35, no 5, pp. 1668–1674, 2011.

I. Ferrer, M. Gamiz, M. Almeida, y A. Ruiz, “Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru)”, Waste Manag., vol. 29, pp. 168–173, ene. 2009.

M. Garfí, P. Gelman, J. Comas, W. Carrasco, y I. Ferrer, “Agricultural reuse of the digestate from low-cost tubular digesters in rural Andean communities”, Waste Manag., vol. 31, pp. 2584–2589, ene. 2011.

H. Bouallagui, R. Ben Cheikh, L. Marouani, y M. Hamdi, “Mesophilic biogas production from fruit and vegetable waste in a tubular digester”, Bioresour. Technol., vol. 86, pp. 85–89, ene. 2003.

S. Lansing, R. B. Botero, y J. F. Martin, “Waste treatment and biogas quality in small-scale agricultural digesters”, Bioresour. Technol., vol. 99, pp. 5881–5890, ene. 2008.

M. A. Gonzalez-Salazar et al., “Methodology for biomass energy potential estimation: Projections of future potential in Colombia”, Renew. Energy, vol. 69, pp. 488–505, 2014.

S. F. Pfau, J. E. Hagens, y B. Dankbaar, “Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role”, Energy. Sustain. Soc., vol. 7, no 1, 2017.

R. Kadam y N. L. Panwar, “Recent advancement in biogas enrichment and its applications”, Renew. Sustain. Energy Rev., vol. 73, no September 2016, pp. 892–903, 2017.
[43] REN21, Renewables 2017: global status report, vol. 72, no October 2016. 2017.

M. A. Gonzalez-Salazar et al., “Methodology for estimating biomass energy potential and its application to Colombia”, Appl. Energy, vol. 136, pp. 781–796, 2014.

UPME, “Balance Energético Colombiano - BECO”, Balance Energético Colombiano - BECO 1975 -2015, 2015. [En línea]. Disponible en: http://www1.upme.gov.co/InformacionCifras/Paginas/BECOCONSULTA.aspx. [Accedido: 10-abr-2018].

B. K. Das, N. Hoque, S. Mandal, T. K. Pal, y M. A. Raihan, “A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh”, Energy, vol. 134, pp. 775–788, 2017.

C. Teglia, A. Tremier, y J. L. Martel, “Characterization of solid digestates: Part 2, assessment of the quality and suitability for composting of six digested products”, Waste and Biomass Valorization, vol. 2, no 2, pp. 113–126, 2011.

R. Nkoa, “Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review”, Agron. Sustain. Dev., vol. 34, no 2, pp. 473–492, 2014.

J. A. Alburquerque et al., “Assessment of the fertiliser potential of digestates from farm and agroindustrial residues”, Biomass and Bioenergy, vol. 40, pp. 181–189, 2012.

A. Muscolo, G. Settineri, T. Papalia, E. Attinà, C. Basile, y M. R. Panuccio, “Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem”, Sci. Total Environ., vol. 586, pp. 746–752, 2017.

M. Solé-Bundó et al., “Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge”, Sci. Total Environ., vol. 586, pp. 1–9, 2017.

A. Wellinger, J. Murphy, D. Baxter, A. Welliger, J. Murphy, y D. Baxter, The Biogas Handbook: Science, Production and Applications, 1 ra. Cambridge, UK.: Woodhead Publishing Limited, 2013.

A. J. Ward, P. J. Hobbs, P. J. Holliman, y D. L. Jones, “Optimisation of the anaerobic digestion of agricultural resources”, Bioresour. Technol., vol. 99, no 17, pp. 7928–7940, 2008.

M. Garfí, L. Ferrer-Martí, E. Velo, y I. Ferrer, “Evaluating benefits of low-cost household digesters for rural Andean communities”, Renew. Sustain. Energy Rev., vol. 16, no 1, pp. 575–581, 2012.

H. Katuwal y A. K. Bohara, “Biogas: A promising renewable technology and its impact on rural households in Nepal”, Renew. Sustain. Energy Rev., vol. 13, no 9, pp. 2668–2674, 2009.

N. Bruce, R. Perez-Padilla, y R. Albalak, “Indoor air pollution in developing countries: a major environmental and public health challenge”, Environ. Heal., vol. 78, no 9, p. 15, 2000.

G. Kaur, Y. S. Brar, y D. P. Kothari, “Potential of livestock generated biomass: Untapped energy source in India”, Energies, vol. 10, no 7, pp. 1–15, 2017.

M. Poeschl, S. Ward, y P. Owende, “Environmental impacts of biogas deployment - Part I: Life Cycle Inventory for evaluation of production process emissions to air”, J. Clean. Prod., vol. 24, pp. 168–183, 2012.

M. Poeschl, S. Ward, y P. Owende, “Environmental impacts of biogas deployment - Part II: Life Cycle Assessment of multiple production and utilization pathways”, J. Clean. Prod., vol. 24, pp. 184–201, 2012.

S. Lansing, A. Maile-Moskowitz, y A. Eaton, “Waste treatment and energy production from small-scale wastewater digesters”, Bioresour. Technol., vol. 245, pp. 801–809, 2017.

A. Visser y H. R. Khan, “When smoke gets in your eyes: kitchen air quality in rural Bangladeshi homes”, Energy for Sustainable Development, vol. 3, no 4. pp. 52–57, 1996.

E. K. Yiridoe, R. Gordon, y B. B. Brown, “Non Market cobenefits and economic feasibility of on-farm biogas energy production”, Energy Policy, vol. 37, no 3, pp. 1170–1179, 2009.