Análisis mineralógico de un suelo residual de la Dunita de Medellín (Colombia) y su influencia en las propiedades físicas y la resistencia al corte no drenada de suelos no saturados
Publicado 2023-02-28
Palabras clave
- Dunita de Medellín,
- Mineralogía de suelos residuales de dunita,
- Suelos lateríticos,
- Óxidos y oxihidróxidos,
- Resistencia al corte no drenada de suelos no saturados
Cómo citar
Derechos de autor 2023 Boletín de Geología

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Altmetrics
Resumen
Los suelos residuales presentan un comportamiento físico-mecánico que es el reflejo de su proceso de formación. En la presente investigación, un suelo residual derivado de la Dunita de Medellín fue caracterizado mineralógicamente, y se evaluó su influencia en algunas propiedades físicas y en la resistencia al corte no drenada en condición no saturada. Los suelos estudiados se localizan en el sector contiguo a “Canteras de Colombia”, en el municipio de Bello (Antioquia, Colombia), sobre el costado oriental de la autopista Medellín-Bogotá. En la zona de estudio, se seleccionó un talud y se tomaron muestras del suelo a diferentes profundidades (por encima de 1,8 m) dentro del perfil de meteorización. La caracterización mineralógica para determinar las fases minerales presentes en los suelos se hizo utilizando difracción de rayos X (DRX), espectroscopía infrarroja por transformada de Fourier (FTIR) y espectroscopía de Mössbauer. Fueron determinadas las propiedades índice del suelo y la resistencia al corte no drenada, esta última mediante los ensayos de resistencia a la compresión no confinada (UCS) y resistencia a la compresión triaxial no consolidada-no drenada (UU). Los suelos residuales derivados de la Dunita de Medellín presentan una composición mineralógica particular, que al parecer tiene un efecto significativo en su comportamiento físico-mecánico. Los suelos más superficiales (0,00 a 0,30 m) se encuentran enriquecidos en óxidos y oxi-hidróxidos de hierro (hematita, magemita y goetita) e hidróxidos de aluminio (gibsita), formando enlaces entre-partículas que producen agregación a los suelos. Estos son de comportamiento laterítico y frágil, y presentan mayor cohesión y mayor resistencia al corte no drenada que los suelos residuales de los horizontes más profundos (0,30 m a 1,80 m), que a su vez presentan menor contenido de óxidos y oxi-hidróxidos y mayor contenido de silicatos como clinocloro y tremolita.
Descargas
Referencias
- Álvarez-Agudelo, J. (1987). Tectonitas Dunitas de Medellín, Departamento de Antioquia, Colombia. Boletín Geológico, 28(3), 9-44.
- Araki, M.S. (1997). Aspectos relativos às propriedades dos solos porosos colapsíveis do Distrito Federal. Dissertação de Mestrado em Geotecnia, Universidade de Brasília, Brasil.
- ASTM D2216-19. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken, PA, 2019. https://doi.org/10.1520/D2216-19
- ASTM D854-14. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, West Conshohocken, PA, 2014. https://doi.org/10.1520/D0854-14
- ASTM D4318-17e1. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D4318-17E01
- ASTM D422-63(2007)e1. Standard Test Methods for Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA, 2007. https://doi.org/10.1520/D0422-63R07E01
- ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D2487-17E01
- ASTM D2166-16. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, PA, 2016. https://doi.org/10.1520/D2166_D2166M-16
- ASTM D2850-15. Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International, West Conshohocken, PA, 2015. https://doi.org/10.1520/D2850-15
- Bo, M.W.; Aruljarah, A.; Sukmak, P.; Horpibulsuk, S. (2015). Mineralogy and geotechnical properties of Singapore marine clay at Changi. Soils and Foundations, 55(3), 600-613. https://doi.org/10.1016/j.sandf.2015.04.011
- Brewer, R. (1964). Fabric and mineral analysis of soils. Wiley & Sons.
- Cundy, A.B.; Hopkinson, L. (2005). Electrokinetic iron pan generation in unconsolidated sediments: implications for contaminated land remediation and soil engineering. Applied Geochemistry, 20(5), 841-848. https://doi.org/10.1016/j.apgeochem.2004.11.014
- de Graft-Johnson, J.W.S.; Bhatia, H.; Hammond, A.A. (1972). Lateritic gravel evaluation for road construction. Journal of the Soil Mechanics and Foundations Division, 98(11), 1245-1265. https://doi.org/10.1061/JSFEAQ.0001806
- Deere, D.; Patton, F. (1971). Slope stability in residual soils. 4th Pan American Conference on Soil Mechanics and Foundation Engineering, San Juan, Puerto Rico.
- Echeverri-Ramírez, O. (2005). Efecto de la microestructura en los parámetros de resistencia al esfuerzo cortante de algunos suelos provenientes de rocas ígneas presentes en Medellín. M.Sc. Tesis, Universidad Nacional de Colombia, Medellín, Colombia.
- Fookes, P. (1997). Tropical Residuals Soils. Geological Society Professional Handbook.
- Fresneda-Saldarriaga, C.; Navarro-Saldarriaga, S.; Valencia-González, Y. (2013). Caracterización geotécnica de un suelo tropical laterítico. INGE CUC, 9(1), 219-230.
- Garcia-Casco, A.; Restrepo, J.J.; Correa-Martínez, A.M.; Blanco-Quintero, I.F.; Proenza, J.A.; Weber, M.; Butjosa, L. (2020). The petrologic nature of the “Medellín Dunite” revisited: An algebraic approach and proposal of a new definition of the geological body. In: J. Gómez, A.O. Pinilla-Pachon (ed.). The Geology of Colombia (pp. 45-75), Volume 2, Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.02
- Gidigasu, M.D. (1972). Mode of formation and geotechnical characteristic of laterite materials of Ghana in relation to soil forming factor. Engineering Geology, 6(2), 79-150. https://doi.org/10.1016/0013-7952(72)90034-8
- Kiehl, E. (1979). Manual de Edafologia: Relações Solo – Planta. Editora Agronômica “CERES” Ltda.
- Lagarec, K.; Rancourt, D.G. (1998). Mössbauer Spectral Analysis Software for Windows, version 1.0. Department of Physics, University of Ottawa, 1-40.
- Larrahondo, J.M.; Choo, H.; Burns, S.E. (2011). Laboratory-prepared iron oxide coatings on sands: Submicron-scale small-strain stiffness. Engineering Geology, 121(1-2), 7-17. https://doi.org/10.1016/j.enggeo.2011.04.009
- Little, A.L. (1969). The engineering classification of residual tropical soils. 7th International Conference of Soil Mechanics and Foundation Engineering, México city, México.
- Morales, A.L. (2003). An X-ray diffraction study of corrosion products from low carbon steel. Revista de Metalurgia, 39(Extraordinario 1), 28-31.
- National Engineering Handbook. (2021). Part 650 Engineering Field Handbook. Elementary Soil Engineering Chapter 4. United States Department of Agriculture, NRCS.
- Nogami, J.S.; Villibor, D.F. (1994). Identificação expedita dos grupos de classificação MCT para solos tropicais. X Congreso Brasilero de Mecánica de Suelos e Ingeniería de Fundaciones, São Paulo, Brasil.
- Pineda-Jaimes, J.A.; Colmenares-Montañez, J.E. (2008). Efectos de la meteorización en las propiedades de retención de humedad de dos suelos residuales derivados de una granodiorita. Épsilon, 1(10), 9-21.
- Quintero-Ramírez, A.; Valencia-González, Y.; Lara-Valencia, L.A. (2017). Variaciones geotécnicas en un suelo tropical causadas por los lixiviados de residuos sólidos urbanos: Escala laboratorial. Boletín de Ciencias de la Tierra, 41, 40-47. https://doi.org/10.15446/rbct.n41.57876
- Rahardjo, H.; Aung, K.K.; Leong, E.C.; Rezaur, R.B. (2004). Characteristics of residual soils in Singapore as formed by weathering. Engineering Geology, 73(1-2), 157-169. https://doi.org/10.1016/j.enggeo.2004.01.002
- Rodríguez, G.; González, H.; Zapata, G. (2005). Geología de la plancha 147 Medellín Oriental. INGEOMINAS. Comprende mapa a escala 1:50.000 e informe, 312 p.
- Romaña, J.F.; Zapata, G.; Giraldo, R.; Valencia, Y. (2009). Efecto de la meteorización en el comportamiento de un suelo tropical del oriente antioqueño. XV Jornadas Geotécnicas de la Ingeniería Colombiana, Bogotá, Colombia.
- Serna-Quintana, C.A. (2011). La naturaleza social de los desastres asociados a inundaciones y deslizamientos en Medellín (1930-1990). Historia Crítica, 43, 198-223. https://doi.org/10.7440/histcrit43.2011.11
- Shaqour, F.M.; Jarrar, G.; Hencher, S.; Kuisi, M. (2008). Geotechnical and mineralogical characteristics of marl deposits in Jordan. Environmental Geology, 55(8), 1777-1783. https://doi.org/10.1007/s00254-007-1128-5
- Sowers, G.F. (1985). Residual Soils in the United States. In: E.W. Brand, H.B. Phillipson (eds.). Sampling and Testing of Residual Soils. A Review of International Practice (pp. 183-191). Scorpion Press.
- Suárez, J. (1998). Deslizamientos y estabilidad de taludes en zonas tropicales. Publicaciones UIS.
- Tsige, M.; González de Vallejo, L. (1996). Microfábrica de las arcillas azules del Guadalquivir y su relación con los procesos de meteorización. Geogaceta, 20(6), 1324-1327.
- Wesley, L.D. (2010). Geotechnical Engineering in Residual Soils. Wiley & Sons, Inc.
- Yean-Chin, T.; Chee-Meng, C. (2004). Slope stability and stabilization. In: B.B.K. Huat, G. See-Sew, F.H. Ali (eds.). Tropical Residual Soils Engineering (pp. 169-192). Taylor & Francis Group.