Vol. 46 Núm. 2 (2024): Boletín de Geología
Artículos científicos

Eventos anómalos de resistividad aparente del 2018 al 2021 y su posible asociación con la actividad sísmica del Nido de Bucaramanga, Colombia

Nathaly Alba
Universidad Nacional de Colombia
Carlos Alberto Vargas
Universidad Nacional de Colombia

Publicado 2024-06-14

Palabras clave

  • Método magnetotelúrico,
  • Anomalías de resistividad,
  • Nido Sísmico de Bucaramanga,
  • Sismicidad intermedia

Cómo citar

Alba Quintero, N., & Vargas, C. A. (2024). Eventos anómalos de resistividad aparente del 2018 al 2021 y su posible asociación con la actividad sísmica del Nido de Bucaramanga, Colombia. Boletín De Geología, 46(2), 31–46. https://doi.org/10.18273/revbol.v46n2-2024002

Altmetrics

Resumen

Tres estaciones magnetotelúricas, ubicadas sobre la Cordillera Oriental de Colombia y pertenecientes a la Red Geofísica de la Universidad Nacional de Colombia (TUNJ, USME y VCIO), han sido utilizadas para detectar anomalías espaciales y temporales de la resistividad aparente a una profundidad superior a 200 km, en el período abril de 2018 hasta junio de 2021. A partir de este monitoreo se observó que existen anomalías transitorias horas antes de la crisis sísmica del 23 de abril de 2018 en el Nido Sísmico de Bucaramanga (NSB). Dentro de los principales hallazgos de este trabajo, se pudo identificar una posible asociación entre anomalías de resistividad aparente previas o durante cuatro eventos sísmicos con 3,3 ≤ Mw < 4,3 a una profundidad de 115 ≤ H < 154 km el 23 de abril de 2018. La asociación entre anomalías de resistividad y eventos sísmicos se explica por otros autores como un proceso de migración de fluidos, el cual genera presión de poro que supera el esfuerzo efectivo y provoca el fracturamiento dentro del NSB.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Aizawa, K.; Takakura, S.; Asaue, H.; Koike, K.; Yoshimura, R.; Yamazaki, K.I.; Komatsu, S.; Utsugi, M.; Inoue, H.; Tsukamoto, K.; Uyeshima, M. (2021). Electrical conductive fluid-rich zones and their influence on the earthquake initiation, growth, and arrest processes: observations from the 2016 Kumamoto earthquake sequence, Kyushu Island, Japan. Earth, Planets and Space, 73(1), 1-12. https://doi.org/10.1186/s40623-020-01340-w
  2. Azeez, A.K.; Manoj, C.; Veeraswamy, K.; Harinarayana, T. (2009). Co-seismic EM signals in magnetotelluric measurement-a case study during Bhuj earthquake (26th January 2001), India. Earth, Planets and Space, 61(8), 973-981. https://doi.org/10.1186/BF03352947
  3. Balasco, M.; Lapenna, V.; Romano, G.; Siniscalchi, A.; Stabile, T. A.; Telesca, L. (2015). The Pollino 2011-2012 seismic swarm (southern Italy): first results of the ML= 3.6 aftershock recorded by co-located electromagnetic and seismic stations. Bollettino di Geofisica Teorica ed Applicata, 56(2), 203-210. https://doi.org/10.4430/bgta0138
  4. Barrero, D.; Pardo, A.; Vargas, C.A.; Martínez, J.F. (2007). Colombian sedimentary basins: Nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos.
  5. Bayona, G.; Montenegro, O.; Cardona, A.; Jaramillo, C.; Lamus, F.; Morón, S.; Quiroz, L.; Ruíz, M.C.; Valencia, V.; Parra, M.; Stockli, D. (2010). Estratigrafía, procedencia, subsidencia y exhumación de las unidades paleógenas en el Sinclinal de Usme, sur de la zona axial de la Cordillera Oriental. Geología Colombiana, 35, 5-35.
  6. Cagniard, L. (1953). Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18(3), 605-635. https://doi.org/10.1190/1.1437915
  7. Chadha, R.K.; Pandey, A.P.; Kuempel, H.J. (2003). Search for earthquake precursors in well water levels in a localized seismically active area of reservoir triggered earthquakes in India. Geophysical Research Letters, 30(7). https://doi.org/10.1029/2002GL016694
  8. Chave, A.D.; Jones, A.G. (2012). The magnetotelluric method. Theory and Practice. Cambridge Ed.
  9. Chiarabba, C.; De Gori, P.; Faccenna, C.; Speranza, F.; Seccia, D.; Dionicio, V.; Prieto, G.A. (2016). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1), 16-27. https://doi.org/10.1002/2015GC006048
  10. Cortés, M.; Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020
  11. Du, X.B. (2011). Two types of changes in apparent resistivity in earthquake prediction. Science China Earth Sciences, 54(1), 145-156. https://doi.org/10.1007/s11430-010-4031-y
  12. Dzierma, Y.; Rabbel, W.; Thorwart, M.; Koulakov, I.; Wehrmann, H.; Hoernle, K.; Comte, D. (2012). Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum-Insights into fluid release and plate coupling. Earth and Planetary Science Letters, 331-332, 164-176. https://doi.org/10.1016/j.epsl.2012.02.006
  13. Fan, Y.Y.; Du, X.B.; Zlotnicki, J.; Tan, D.C.; Liu, J.; An, Z.H.; Chen, J.Y.; Zheng, G.L.; Xie, T. (2010). The electromagnetic phenomena before the Ms8.0 Wenchuan earthquake. Acta Geophysica Sinica, 53(12), 2887-2898. https://doi.org/10.3969/j.issn.0001-5733.2010.12.012
  14. Fan, Y.; Du, X.; An, Z.; Liu, J.; Tan, D.; Chen, J. (2015). Earthquake-related electric field changes observed in the ionosphere and ground. Acta Geophysica, 63(3), 679-697. https://doi.org/10.1515/acgeo-2015-0015
  15. Freund, F. (2010). Toward a unified solid state theory for pre-earthquake signals. Acta Geophysica, 58(5), 719-766. https://doi.org/10.2478/s11600-009-0066-x
  16. Frohlich, C.; Kadinsky-Cade, K.; Davis, S.D. (1995). A reexamination of the Bucaramanga, Colombia, earthquake nest. Bulletin of the Seismological Society of America, 85(6), 1622- 1634. https://doi.org/10.1785/BSSA0850061622
  17. Gómez, J.S. (2020). Estimación de la variación temporal de resistividades aparentes asociada a la ocurrencia de actividad sísmica en la sabana de Bogotá a partir de registros MT de la estación USME de la RSUNAL. Tesis, Universidad Nacional de Colombia, Bogotá, Colombia.
  18. Guo, C.; Zhang, Y. (2016). Multicomponent diffusion in silicate melts: SiO2–TiO2–Al2O3– MgO–CaO–Na2O–K2O System. Geochimica et Cosmochimica Acta, 195, 126-141. https://doi.org/10.1016/j.gca.2016.09.003
  19. Helman, D.S. (2020). Seismic electric signals (SES) and earthquakes: A review of an updated VAN method and competing hypotheses for SES generation and earthquake triggering. Physics of the Earth and Planetary Interiors, 302, 106484. https://doi.org/10.1016/j.pepi.2020.106484
  20. Honkura, Y.; Işikara, A.M.; Oshiman, N.; Ito, A.; Üçer, B.; Bariş, Ş.; Tunçer, M.K.; Matsushima, M.; Pektaş, R.; Çelik, C.; Tank, S.B.; Takahashi, F.; Nakanishi, M.; Yoshimura, R.; Ikeda, Y.; Komut, T. (2000). Preliminary results of multidisciplinary observations before, during and after the Kocaeli (Izmit) earthquake in the western part of the North Anatolian Fault Zone. Earth, Planets and Space, 52(4), 293-298. https://doi.org/10.1186/BF03351638
  21. Honkura, Y.; Satoh, H.; Ujihara, N. (2004). Seismic dynamo effects associated with the M7. 1 earthquake of 26 May 2003 off Miyagi Prefecture and the M6. 4 earthquake of 26 July 2003 in northern Miyagi Prefecture, NE Japan. Earth, Planets and Space, 56(2), 109-114. https://doi.org/10.1186/BF03353395
  22. Huang, Q.H.; Lin, Y.F. (2010). Numerical simulation of selectivity of seismic electric signal and its possible influences. Chinese Journal of Geophysics, 53(3), 535-543. https://doi.org/10.3969/j.issn.0001-5733.2010.03.007
  23. Huang, Q.; Han, P.; Hattori, K.; Ren, H. (2020). Electromagnetic Signals Associated With Earthquakes: A Review of Observations, Data Processing, and Mechanisms in China. In: N. Grobbe, A. Revil, Z. Zhu, E. Slob (eds.). Seismoelectric Exploration: Theory, Experiments, and Applications (pp. 415-436). American Geophysical Union. http://doi.org/10.1002/9781119127383.ch26
  24. Hyndman, R.D.; Vanyan, L.L.; Marquis, G.; Law, L.K. (1993). The origin of electrically conductive lower continental crust: saline water or graphite? Physics of the Earth and Planetary Interiors, 81(1-4), 325-345. https://doi.org/10.1016/0031-9201(93)90139-Z
  25. Karakelian, D.; Klemperer, S.L.; Fraser-Smith, A.C.; Thompson, G.A. (2002). Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics, 359(1-2), 65-79. https://doi.org/10.1016/S0040-1951(02)00439-0
  26. Karato, S. (2013). Physics and Chemistry of the Deep Earth. John Wiley and Sons.
  27. Kumar, P.V.; Rawat, V.S.; Patro, P.K.; Gupta, A.K.; Babu, N. (2021). Assessment and recognition of pre-and co-seismic electromagnetic signatures from magnetotelluric data: a case study from Koyna–Warna seismoactive region, India. Acta Geophysica, 69(1), 1-15. https://doi.org/10.1007/s11600-020-00510-4
  28. Lagardère, C.; Vargas, C.A. (2021). Earthquake distribution and lithospheric rheology beneath the Northwestern Andes, Colombia. Geodesy and Geodynamics, 12(1), 1-10. https://doi.org/10.1016/j.geog.2020.12.002
  29. Lu, J.; Xue, S.; Qian, F.; Zhao, Y.; Guan, H.; Mao, X.; Ruan, A.; Yu, S.; Xiao, W. (2004). Unexpected changes in resistivity monitoring for earthquakes of the Longmen Shan in Sichuan, China, with a fixed Schlumberger sounding array. Physics of the Earth and Planetary Interiors, 145(1-4), 87-97. https://doi.org/10.1016/j.pepi.2004.02.009
  30. Matzka, J.; Stolle, C.; Yamazaki, Y.; Bronkalla, O.; Morschhauser, A. (2021). The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather, 19(5), e2020SW002641. https://doi.org/10.1029/2020SW002641
  31. Nagao, T.; Orihara, Y.; Yamaguchi, T.; Takahashi, I.; Hattori, K.; Noda, Y.; Sayamagi. K.; Uyeda, S. (2000). Co‐seismic geoelectric potential changes observed in Japan. Geophysical Research Letters, 27(10), 1535-1538. https://doi.org/10.1029/1999GL005440
  32. Nagao, T.; Enomoto, Y.; Fujinawa, Y.; Hata, M.; Hayakawa, M.; Huang, Q.; Izutsu, J.; Kushida, Y.; Maeda, K.; Oike, K.; Uyeda, S.; Yoshino, T. (2002). Electromagnetic anomalies associated with 1995 Kobe earthquake. Journal of Geodynamics, 33(4-5), 401-411. https://doi.org/10.1016/S0264-3707(02)00004-2
  33. Negarestani, A.; Setayeshi, S.; Ghannadi-Maragheh, M.; Akashe, B. (2002). Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. Journal of Environmental Radioactivity, 62(3), 225-233. https://doi.org/10.1016/S0265-931X(01)00165-5
  34. NOAA (2021). National Oceanic and Atmospheric Administration. https://www.swpc.noaa.gov/products/planetary-k-index
  35. Pérez-Forero, D.; Koulakov, I.; Vargas, C.A.; Gerya, T.; Arifi, N.A. (2023). Lithospheric delamination as the driving mechanism of intermediate-depth seismicity in the Bucaramanga Nest, Colombia. Scientific Reports, 13, 23084. https://doi.org/10.1038/s41598-023-50159-4
  36. Pommier, A.; Evans, R.L.; Key, K.; Tyburczy, J.A.; Mackwell, S.; Elsenbeck, J. (2013). Prediction of silicate melt viscosity from electrical conductivity: A model and its geophysical implications. Geochemistry, Geophysics, Geosystems, 14(6), 1685-1692. https://doi.org/10.1002/ggge.20103
  37. Qin-zhong, M.; Zhi-sheng, F.; Zhi-ping, S.; Wei-guo, Z. (2004). Study on the variation characteristics of the geoelectric field preceding earthquakes. Acta Seismologica Sinica, 17(3), 334-343. https://doi.org/10.1007/s11589-004-0055-8
  38. Ren, H.; Wen, J.; Huang, Q.; Chen, X. (2015). Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals. Geophysical Journal International, 200(2), 837-850. https://doi.org/10.1093/gji/ggu435
  39. Ren, F.; Zhang, F.; Xu, C.; Wang, G. (2016). Seismic evaluation of reinforced-soil segmental retaining walls. Geotextiles and Geomembranes, 44(4), 604-614. https://doi.org/10.1016/j.geotexmem.2016.04.002
  40. Renzoni, G. (1981). Geología del cuadrángulo J-12 Tunja. Boletín Geológico, 24(2), 31-54. https://doi.org/10.32685/0120-1425/bolgeol24.2.1981.66
  41. Ritter, O.; Hoffmann-Rothe, A.; Bedrosian, P.A.; Weckmann, U.; Haak, V. (2005). Electrical conductivity images of active and fossil fault zones. Geological Society, London, Special Publications, 245, 165-186. https://doi.org/10.1144/GSL.SP.2005.245.01.08
  42. Rodríguez-Pérez, Q.; Zúñiga, F.R.; Márquez-Ramírez, V.H.; Corbo-Camargo, F. (2020). Seismoelectromagnetic effects associated with the 2017 February 15 Veracruz earthquake (Mw=4.8). Geophysical Journal International, 222(2), 1405-1422. https://doi.org/10.1093/gji/ggaa247
  43. Schwarz, G. (1990). Electrical conductivity of the Earth’s crust and upper mantle. Surveys in Geophysics, 11(2), 133-161. https://doi.org/10.1007/BF01901658
  44. SGC. (2001). Geología y memorias de la plancha 266. Servicio Geológico Colombiano.
  45. Simpson, F.; Bahr, K. (2005). Practical magnetotellurics. Cambridge University Press.
  46. Solano-Fino, J.M. (2017). Correlación entre señales EM y eventos sismológicos de la Sabana de Bogotá y alrededores para establecer la existencia de precursores sísmicos. Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia.
  47. Solano-Fino, J.M.; Caneva, A.; Vargas, C.A.; Ochoa, L.H. (2021). Electrical and magnetic data time series’ observations as an approach to identify the seismic activity of non-anthropic origin. Earth Sciences Research Journal, 25(3), 297-307. https://doi.org/10.15446/esrj.v25n3.95782
  48. Sun, W.; Dai, L.; Li, H.; Hu, H.; Jiang, J.; Wang, M. (2020). Electrical conductivity of clinopyroxene‐NaCl‐H2O system at high temperatures and pressures: Implications for high‐ conductivity anomalies in the deep crust and subduction zone. Journal of Geophysical Research: Solid Earth, 125(4). https://doi.org/10.1029/2019JB019093
  49. Syracuse, E.M.; Maceira, M.; Prieto, G.A.; Zhang, H.; Ammon, C.J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050
  50. Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
  51. Tikhonov, A.N. (1950). Determination of the electrical characteristics of the deep strata of the Earth’s crust. Doklady Akademii Nauk, SSSR 73(2), 295-29.
  52. Vargas, C.A. (2020). Subduction geometries in northwestern South America. In: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 397-422). Vol. 4, Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.11
  53. Vargas, C.A.; Alfaro, C.; Briceño, L.A.; Alvarado, I.; Quintero, W. (2009). Mapa Geotérmico de Colombia, 2009. X Simposio Bolivariano de Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia.
  54. Vargas, C.A.; Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc‐Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328
  55. Vargas, C.A.; Caneva, A.; Solano, J.M.; Gulisano, A.M.; Villalobos, J. (2023). Evidencing Fluid Migration of the Crust during the Seismic Swarm by Using 1D Magnetotelluric Monitoring. Applied Sciences, 13(4), 2683. https://doi.org/10.3390/APP13042683
  56. Vargas, C.A.; Gomez, J.S.; Gomez, J.J.; Solano, J.M.; Caneva, A. (2023). Space-Time Variations of the Apparent Resistivity Associated with Seismic Activity by Using 1D-Magnetotelluric (MT) Data in the Central Part of Colombia (South America). Applied Sciences, 13(3), 1737. https://doi.org/10.3390/app13031737
  57. Verma, U.P.; Mishra, A.K.; Sinha, M.N. (2021). Do piezoelectric and piezomagnetic sensors like, BaTio2, CoMnF2, CoF2felicitate propagation of electromagnetic signals induced dweue to stress within subsurface of crust and hence display pre-seismic signature? Materials Today: Proceedings, 39(Part 4), 1695-1700. https://doi.org/10.1016/j.matpr.2020.06.154
  58. Wannamaker, P.E.; Caldwell, T.G.; Jiracek, G.R.; Maris, V.; Hill, G.J.; Ogawa, Y.; Bibby, H.M.; Bennie, S.L.; Heise, W. (2009). Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature, 460(7256), 733-736. https://doi.org/10.1038/nature08204
  59. Zarifi, Z.; Havskov, J.; Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1-2), 93-105. https://doi.org/10.1016/J.TECTO.2007.06.004
  60. Zhang, X.; Shen, X.; Miao, Y. (2012). Electromagnetic Anomalies around Wenchuan Earthquake and Their Relationship with Earthquake Preparation. Procedia Environmental Sciences, 12(Part A), 693-701. https://doi.org/10.1016/j.proenv.2012.01.336
  61. Zhang, J.; Wu, X.; Yang, X.; Du, W.; Yue, M. (2017). Observational evidence of anisotropic changes of apparent resistivity before strong earthquakes. Geophysical Journal International, 210(3), 1323-1331. https://doi.org/10.1093/gji/ggx235