Vol. 45 Núm. 3 (2023): Boletín de Geología
Artículos científicos

Petrografía y geoquímica del intrusivo de Naiza, cordillera Cutucú, Ecuador

Christian Romero-Cóndor
Instituto de Investigación Geológico y Energético
Fausto Carranco-Andino
Instituto de Investigación Geológico y Energético
Ana Gramal-Aguilar
Instituto de Investigación Geológico y Energético
Nadeshka Cobos-Maldonado
Universidad Central del Ecuador
Paola Pazmiño-Aguiar
Escuela Politécnica Nacional
Darwin Condoy-Guiracocha
Instituto de Investigación Geológico y Energético
Franz Betancourt-Valdivieso
Instituto de Investigación Geológico y Energético

Publicado 2023-10-26

Palabras clave

  • Magmatismo Jurásico,
  • Zona subandina,
  • Indanza,
  • Ecuador

Cómo citar

Romero-Cóndor, C., Carranco-Andino, F., Gramal-Aguilar, A., Cobos-Maldonado, N. ., Pazmiño-Aguiar, P., Condoy-Guiracocha, D., & Betancourt-Valdivieso, F. (2023). Petrografía y geoquímica del intrusivo de Naiza, cordillera Cutucú, Ecuador. Boletín De Geología, 45(3), 15–36. https://doi.org/10.18273/revbol.v45n3-2023001

Altmetrics

Resumen

En los Andes ecuatorianos, el registro del magmatismo Jurásico aflora al sureste de la zona Subandina. Estas rocas intrusivas fueron agrupadas indiscriminadamente en el batolito de Zamora, que fue definido como un cinturón de rocas intrusivas de 100 km de largo y de tendencia N-S, considerado las raíces magmáticas de un arco continental metaluminoso, calco-alcalino de larga vida, datado en el Jurásico Inferior (180 a 162 Ma). Sin embargo, el batolito de Zamora y rocas sedimentarias contemporáneas fueron afectadas por múltiples intrusiones, las cuales tienen alto interés científico y económico debido a su estilo de mineralización. Recientemente, al noroeste de Indanza, en el sector de Naiza, un granitoide emplazado en rocas sedimentarias de la Formación Chapiza y volcánicas de la Formación Misahuallí fue datado en 148,34±1,65 Ma. El intrusivo Naiza es una cuarzomonzonita, compuesta por oligoclasa, andesina, microclina, cuarzo, biotita y hornblenda. Datos geoquímicos indican que este intrusivo tiene afinidad alcalina a calco-alcalina alta en K y carácter metalumínoso. Patrones de tierras raras muestran: enriquecimiento de LREE respecto a HREE, anomalías positivas de Rb y Th, anomalías negativas de Eu y Nb. Estos patrones son comunes en ambientes de arco magmático de margen continental. Anomalías positivas de Pb indican contaminación cortical. Las relaciones entre Y, La y Nb sugieren que este intrusivo se formó en un episodio tardío a postmagmático en un dominio intracontinental.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Angulo, A.; Bustos, J.; Rivadeneira, M.; Navarrete, J.; Baby, P.; Palacios, D. (2018). Arquitectura estructural y estratigráfica de la secuencia pre-aptiense de la cuenca Oriente ecuatoriana. FIGEMPA: Investigación y Desarrollo, 1(1), 9-14. https://doi.org/10.29166/revfig.v1i1.877
  2. Aspden, J.A.; Litherland, M. (1992). The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205(1-3), 187-204. https://doi.org/10.1016/0040-1951(92)90426-7
  3. Baby, P.; Rivadeneira, M.; Barragán, R.; Christophoul, F. (2013). Thick-skinned tectonics in the Oriente foreland basin of Ecuador. Geological Society, London, Special Publications, 377(1), 59-76. https://doi.org/10.1144/SP377.1
  4. Bayona, G.; Bustamante, C.; Nova, G.; Salazar- Franco, A.M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: J. Gómez, A.O. Pinilla-Pachón (eds.). The Geology of Colombia (pp. 171-207). Volume 2. Servicio Geológico Colombiano. https://doi.org/10.32685/pub. esp.36.2019.05
  5. Belousova, E.; Griffin, W.; O’Reilly, S.; Fisher, N. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602-622. https://doi.org/10.1007/s00410-002-0364-7
  6. BGS-CODIGEM. (1994). Geological and metal ocurrence maps of the Cordillera Real and El Oro metamorphic belts, Ecuador.
  7. Cabanis, B.; Lecolle, M. (1989). Le diagramme La/10–Y/15–Nb/8; un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de melange et/ou de contamination crustale. Comptes Rendus de l’Academie des Sciences, Serie 2, Mecanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, 309(20), 2023-2029.
  8. Cherpeau, N.; Caumon, G.; Caers, J.; Lévy, B. (2012). Method for stochastic inverse modeling of fault geometry and connectivity using flow data. Mathematical Geosciences, 44(2), 147-168. https://doi.org/10.1007/s11004-012-9389-2
  9. Chew, D.M.; Schaltegger, U.; Kosler, J.; Whitehouse, M.J.; Gutjahr, M.; Spikings, R.A.; Miskovic, A. (2007). U–Pb geochronologic evidence for the evolution of the Gondwanan margin of the north–central Andes. GSA Bulletin, 119(5-6), 697-711. https://doi.org/10.1130/B26080.1
  10. Chiaradia, M.; Fontboté, L.; Beate, B. (2004). Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineralium Deposita, 39(2), 204-222. https://doi.org/10.1007/s00126- 003-0397-5
  11. Chiaradia, M.; Vallance, J.; Fontboté, L.; Stein, H., Schaltegger, U.; Coder, J.; Richards, J.; Villenueve, M.; Gendall, I. (2009). U–Pb, Re–Os, and 40Ar/39Ar geochronology of the Nambija Au–skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita, 44(4), 371-387. https://doi.org/10.1007/s00126-008-0210-6
  12. Cochrane, R. (2013). U–Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the volume balance of continents. PhD Thesis, University of Geneva, Suiza.
  13. Cochrane, R.; Spikings, R.; Chew, D.; Wotzlaw, J.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; Van der Lelij, R. (2014). High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta, 127, 39-56. https://doi.org/10.1016/j.gca.2013.11.028
  14. Coder, J.M. (2001). Geologic setting, geochronologic relationships, and litho–geochemistry of the Pangui porphyry copper district, southeast Ecuador. MSc. Theses, University of Alberta, Canada.
  15. Dashwood. M.; Abbotts; I. (1990). Aspects of the petroleum geology of the Oriente basin, Ecuador. Geological Society, London, Special Publication, 50, 89-117. https://doi.org/10.1144/GSL. SP.1990.050.01.06
  16. De Lima, J.V.; Guimarães, I.D.P.; Santos, L.; Amorim, J.V.A.; Farias, D.J.S. (2017). Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75, 116-133. https://doi.org/10.1016/j.jsames.2017.02.004
  17. Díaz, M.; Baby, P.; Rivadeneira, M.; Christophoul, F. (2004). The pre–Aptense of the Ecuadorian East basin. In: P. Baby, M. Rivadeneira, R. Barragan (eds.). The Oriente Basin: geology and oil (pp. 23-44). Travaux de l’Institut Français des Études Andines.
  18. Drobe, J.; Lindsay, D.; Stein, H.; Gabites, J. (2013). Geology, mineralization, and geochronological constraints of the Mirador Cu–Au porphyry district, southeast Ecuador. Economic Geology, 108(1), 11-35. https://doi.org/10.2113/econgeo.108.1.11
  19. Erwan, M.; Camille, F.; Jean-Louis, P.; Ramon, C.; Anne-Marie, L. (2018). Petro–geochemistry and zircon U–Pb dating of the late Variscan Flamanville granodiorite and its Paleoproterozoic basement (Normandy, France). Géologie de la France, 1, 34-48.
  20. Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
  21. Frost, B.R.; Frost, C.D. (2008). A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11), 1955-1969. https://doi.org/10.1093/petrology/egn054
  22. Frost, C.D.; Frost, B.R. (2010). On ferroan (A–type) granitoids: their compositional variability and modes of origin. Journal of Petrology, 52(1), 39-53. https://doi.org/10.1093/petrology/egq070
  23. Gaibor, J.; Hochuli, J.P.; Winkler, W.; Toro, J. (2008). Hydrocarbon source potential of the Santiago formation, Oriente basin, SE of Ecuador. Journal of South American Earth Sciences, 25(2), 145-156. https://doi.org/10.1016/j.jsames.2007.07.002
  24. Goldschmid, K.T. (1941). Geological Compilation on the Cutucú – Macuma – Cangaime Region. SHELL Geological Report, 131 p.
  25. Gramal-Aguilar, A.; Carranco-Andino, F.; Romero-Cóndor, C.; Pulupa-Vela, R.; Calderón-Romero, D.; Toainga-Oñate, S. (2021). Evidencias de canibalización de secuencias Cretácicas y Paleógenas de la Cuenca Oriente en la cuña orogénica de los Andes ecuatorianos. Boletín de Geología, 43(3), 15-34. https://doi.org/10.18273/revbol.v43n3-2021001
  26. Gutiérrez, E.G.; Horton, B.K.; Vallejo, C.; Jackson, L.J.; George, S.W. (2019). Provenance and geochronological insights into Late Cretaceous–Cenozoic foreland basin development in the Subandean Zone and Oriente Basin of Ecuador. In: B.K. Horton, A. Folguera (eds.). Andean Tectonics (pp. 237-268). Elsevier. https://doi.org/10.1016/B978-0-12-816009-1.00011-3
  27. Hall, M.; Calle, J. (1982). Geochronological control for the main Tectonic–Magmatic events of Ecuador. Earth-Science Reviews, 18(3-4), 215-239. https://doi.org/10.1016/0012-8252(82)90038-1
  28. Harris, N.B.; Pearce, J.A.; Tindle, A.G. (1986). Geochemical characteristics of collision–zone magmatism. Geological Society, London, Special Publications, 19(1), 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
  29. Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of Petrology, 48(12), 2341-2357. https://doi.org/10.1093/petrology/egm062
  30. IIGE. (2019). Memoria técnica del mapa geológico de Sucúa, escala 1:100.000 IIGE, Ecuador.
  31. INEMIN. (1990). Mapa geológico de Indanza, escala 1:100.000, hoja 93. INEMIN, Ecuador.
  32. Jaillard, E.; Caron, M.; Dhondt, A.; Ordóñez, M.; Andrade, R.; Bengtson, P.; Huacho, J. (1997). Síntesis estratigráfica y sedimentológica del Cretáceo y Paleógeno de la Cuenca oriental del Ecuador. Convenio ORSTOM–PETROPRODUCCION, 1, 1–164.
  33. Jiang, Y.H.; Jin, G.D.; Liao, S.Y.; Zhou, Q.; Zhao, P. (2010). Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision. Lithos, 117(1-4), 183-197. https://doi.org/10.1016/j.lithos.2010.02.014
  34. Le Maitre, R.W. (2002). Igneous rocks: a classification and glossary of terms: recommendations of the IUGS, Subcommission on the Systematics of Igneous rocks. Cambridge University Press.
  35. Leary, S.; Sillitoe, R.H.; Stewart, P.W.; Roa, K.J.; Nicolson, B.E. (2016). Discovery, Geology, and Origin of the Fruta del Norte Epithermal Gold–Silver Deposit, Southeastern Ecuador. Economic Geology, 111(5), 1043-1072. https://doi.org/10.2113/econgeo.111.5.1043
  36. Leelanandam, C. (1970). A chlorine-rich biotite from Kondapalli, Andhra Pradesh, India. American Mineralogist, 55(7-8), 1353-1358.
  37. Litherland, M.; Aspden, J.A.; Jemielita, R.A. (1994). The metamorphic belts of Ecuador. Overseas Geology and Mineral Resources, 11, 2 map enclosures at 1:500.000 scale. British Geological Survey, Nottingham. https://doi.org/10.1017/S0016756897297657
  38. Maniar, P.D.; Piccoli, P.M. (1989). Tectonic discrimination of granitoids. GSA Bulletin, 101(5), 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  39. Middlemost, E.A. (1994). Naming materials in the magma/igneous rock system. Earth–Science Reviews, 37(3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
  40. Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
  41. Navas, G.E.; Prieto, P.M. (2011). Geoportales en el Ecuador. La Granja: Revista de Ciencias de la Vida, 14(2), 58-64.
  42. Parada, M.A. (1984). La asociación de granitos subsolvus e hipersolvus del plutón Monte Grande (Chile 30° S) y el desarrollo de sus pertitas. Andean Geology, 23, 69-77.
  43. Pearce, J.A.; Harris, N.B.; Tindle, A.G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956-983. https://doi.org/10.1093/petrology/25.4.956
  44. Petit, J.P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5-6), 597-608. https://doi.org/10.1016/0191-8141(87)90145-3
  45. Pratt, W.T.; Duque, P.; Ponce, M. (2005). An autochthonous geological model for the eastern Andes of Ecuador. Tectonophysics, 399(1-4), 251- 278. https://doi.org/10.1016/j.tecto.2004.12.025
  46. Ray, J.; Sen, G.; Ghosh, B. (2011). Topics in igneous petrology. Springer Science Business Media.
  47. Restrepo, M.; Bustamante, C.; Cardona, A.; Beltrán- Triviño, A.; Bustamante, A.; Chavarría, L.; Valencia, V. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 111, 103439. https://doi.org/10.1016/j.jsames.2021.103439
  48. Rodríguez-García, G.; Zapata, J.P.; Correa-Martínez, A.M.; Ramírez, D.A.; Obando, G. (2020). Aportes al conocimiento del plutonismo del Arco Mocoa–Santa Marta durante el Jurásico Temprano–Medio, en la margen noroccidental de los Andes, Colombia. Boletín de Geología, 42(3), 15-50. https://doi.org/10.18273/revbol.v42n3-2020001
  49. Rodríguez-García, G.; Correa-Martínez, A.M.; Zapata, J.P.; Ramírez, D.A.; Sabrica, C.A. (2022). Evolution of arc magmatic cycles from the Carboniferous to the Early Cretaceous in the western paleomargin of Gondwana, north of the Andes. Boletín Geológico, 49(2), 15- 43. https://doi.org/10.32685/0120-1425/bol.geol.49.2.2022.663
  50. Romero, C.; Gaibor, J.; Vallejo, C.; Condoy, D. (2019a). Stratigraphy of the Santiago Formation along the Patuca – Santiago road section; implications for the evolution of southeastern Ecuador during the Jurassic. 8th ISAG Conference. Quito, Ecuador. https://doi.org/10.13140/RG.2.2.17490.58561
  51. Romero, C.; Gramal, A.B.; Carranco, F.; Toainga, S. (2019b). Asociación de facies: La clave para la identificación de la Formación Hollín en la región sur oriental del Ecuador. Revista Científica GeoLatitud, 2(1), 9-23.
  52. Romero, C.; Příjmení, A.; Granja, J.; Escobar, V.; Gramal, A.B.; Condoy, D.; Carranco, F.; Vélez, T.; Calderón, D. (2021). Caracterización geoquímica e implicaciones geodinámicas del Miembro Yaupi de la Formación Chapiza en la Cordillera Cutucú, Ecuador. Revista Científica GeoLatitud, 4(2), 11-25.
  53. Romeuf, N. (1994). Volcanisme jurassique et métamorphisme en Équateur et au Perou, caractéristiques pétrographiques, minéralogiques et géochimiques, implications géodynamiques. Doctor Thesis. Universite Aix–Marseille, Francia.
  54. Ruiz, G.M.; Seward, D.; Winkler, W. (2007). Evolution of the Amazon Basin in Ecuador with special reference to hinterland tectonics: data from zircon fission–track and heavy mineral analysis. Developments in Sedimentology, 58, 907-934. https://doi.org/10.1016/S0070-4571(07)58036-2
  55. Shand, S.J. (1927). On the relations between silica, alumina, and the bases in eruptive rocks, considered as a means of classification. Geological Magazine, 64(10), 446-449. https:// doi.org/10.1017/S0016756800103760
  56. Spencer, E.W. (2017). Geologic maps: A practical guide to preparation and interpretation. Waveland Press.
  57. Spikings, R.; Cochrane, R.; Villagómez, D.; Van der Lelij, R.; Vallejo, C.; Winkler, W.; Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95-139. https://doi.org/10.1016/j.gr.2014.06.004
  58. Spikings, R.; Paul, A.; Vallejo, C.; Reyes, P. (2021). Constraints on the ages of the crystalline basement and Palaeozoic cover exposed in the Cordillera real, Ecuador: 40Ar/39Ar analyses and detrital zirco U/Pb geochronology. Gondwana Research, 90, 77-101. https://doi.org/10.1016/j.gr.2020.10.009
  59. Sun, S.S.; McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-34. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  60. Taylor, S.R.; McLennan, S.M. (1981). The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 301(1461), 381-399. https://doi.org/10.1098/rsta.1981.0119
  61. Townsend, P.J. (1988). A Field Excursion to the West Flank of the Cutucú Uplift, Southern Foothills of Cordillera Real, Ecuador. British Petroleum Report, p. 12.
  62. Trenkamp, R.; Kellogg, J.N.; Freymueller, J.T.; Mora, H.P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157-171. https://doi.org/10.1016/S0895-9811(02)00018-4
  63. Tschopp, H.J. (1953). Oil explorations in the Oriente of Ecuador, 1938–1950. AAPG Bulletin, 37(10), 2303-2347. https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D
  64. Vallance, J.; Fontboté, L.; Chiaradia, M.; Markowski, A.; Schmidt, S.; Vennemann, T. (2009). Magmatic–dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern Ecuador). Mineralium Deposita, 44(4), 389-413. https://doi.org/10.1007/s00126-009-0238-2
  65. Vallejo, C.; Spikings, R.A.; Horton, B.K.; Luzieux, L.; Romero, C.; Winkler, W.; Thomsen, T.B. (2019). Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment. In: B.K. Horton, A. Folguera (eds.). Andean Tectonics (pp. 209- 236). Elsevier. https://doi.org/10.1016/B978-0-12-816009-1.00010-1
  66. Vallejo, C.; Romero, C.; Horton, B.K.; Spikings, R.A.; Gaibor, J.; Winkler, W.; Esteban, J.J.; Thomsen, T.B.; Mariño, E. (2021). Jurassic to Early Paleogene sedimentation in the Amazon region of Ecuador: Implications for the paleogeographic evolution of northwestern South America. Global and Planetary Change, 204, 103555. https://doi.org/10.1016/j.gloplacha.2021.103555
  67. White, H.J.; Skopec, R.A.; Ramírez, F.A.; Rodas, J.A.; Bonilla, G. (1995). Reservoir characterization of the Hollin and Napo formations, Western Oriente Basin, Ecuador. In: A.J. Tankard, R. Suarez, H.J. Welsink (eds.). Petroleum Basins of South America (pp. 573-596). AAPG Memoir, Vol. 62. https://doi.org/10.1306/M62593C30
  68. Wellmann, F.; Caumon, G. (2018). 3-D Structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1-121. https://doi.org/10.1016/bs.agph.2018.09.001
  69. Winchester, J.A.; Floyd, P.A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
  70. Yu, Q.Y.; Bagas, L.; Yang, P.H.; Zhang, D. (2019). GeoPyTool: A cross–platform software solution for common geological calculations and plots. Geoscience Frontiers, 10(4), 1437-1447. https://doi.org/10.1016/j.gsf.2018.08.001