Vol. 45 Núm. 1 (2023): Boletín de Geología
Artículos científicos

Zonificación del gradiente geotérmico en la cuenca Oriente de Ecuador a partir de temperatura de fondo de pozos

Elena Angulo-Romero
Escuela Politécnica Nacional
Bernardo Beate
Escuela Politécnica Nacional
Christian Romero-Cóndor
Instituto de Investigación Geológico y Energético

Publicado 2023-02-28

Palabras clave

  • Recurso geotérmico,
  • Exploración y utilización de energía geotérmica,
  • Energía geotérmica en pozos petroleros

Cómo citar

Angulo-Romero, E., Beate, B., & Romero-Cóndor, C. (2023). Zonificación del gradiente geotérmico en la cuenca Oriente de Ecuador a partir de temperatura de fondo de pozos. Boletín De Geología, 45(1), 119–139. https://doi.org/10.18273/revbol.v45n1-2023006

Altmetrics

Resumen

La cuenca Oriente (Cretácico-Cenozoico tardío) es una de las más complejas y atractivas cuencas sedimentarias de antepaís de los Andes septentrionales. Está constituida por diversos ciclos tectónicos y sedimentarios, desarrollada sobre un basamento Precámbrico. Con el fin de evaluar el potencial geotérmico teórico y los usos potenciales del calor en la cuenca, datos de temperaturas de fondo de pozos (BHT) de 1683 pozos petroleros profundos, distribuidos en 202 campos individuales, han sido ploteados en un mapa georreferenciado, cubriendo un área de 57.400 km2. El tratamiento estadístico de los datos para el cálculo del gradiente geotérmico incluyó correcciones de las BHT, de acuerdo con el método propuesto por Willet y Chapman. A partir de los datos trazados, se hace evidente que a lo largo del Corredor Sacha-Shushufindi, muestra valores bajos de gradiente (7,38 a 26,1ºC/km). Por el contrario, los valores altos de gradiente (26,1 a 69,01ºC/km) están presentes en el Sistema Subandino y en el Sistema Capirón-Tiputini. La distribución de anomalías de temperatura parece estar relacionada con el control estructural NNE-SSO de la cuenca, cuyo patrón de permeabilidad es bien conocido. La extracción de calor para usos comerciales se ve altamente facilitada por la existencia de pozos profundos que penetran en zonas de alto gradiente, lo que ahorra los costos generalmente prohibitivos de la perforación profunda.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Alfaro, C.; Alvarado, I.; Manrique, A. (2015). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin, Colombia. World Geothermal Congress, Melbourne, Australia.
  2. Allen, D.M.; Grasby, S.E.; Voormeij, D.A. (2006). Determining the circulation depth of thermal springs in the southern Rocky Mountain Trench, south-eastern British Columbia, Canada using geothermometry and borehole temperature logs. Hydrogeology Journal, 14(1-2), 159-172. https://doi.org/10.1007/s10040-004-0428-z
  3. Aspden, J.A.; Ivimey-Cook, H.C. (1992). Nuevos datos paleontológicos del Centro y Sureste del Ecuador. Boletín Geológico Ecuatoriano, 3, 33-42.
  4. Baby, P.; Rivadeneira, M.; Barragán, R.; Christophoul, F. (2013). Thick-skinned tectonics in the Oriente foreland basin of Ecuador. Geological Society, London, Special Publications, 377, 59-76. https://doi.org/10.1144/SP377.1
  5. Barba, D. (2017). Gradiente geotermal de las cuencas de ante-arco del Ecuador. VIII Jornadas en Ciencias de la Tierra, Quito, Ecuador.
  6. Barba, D.; Barragán, R.; Gallardo, J.; Ormasa, A.; Salguero, A. (2021). Geothermal Gradients in the Upper Amazon Basin derived from BHT data. International Journal of Terrestrial Heat Flow and Applied Geothermics, 4(1), 85-94. https://doi.org/10.31214/ijthfa.v4i1.58
  7. Beardsmore, G.R.; Cull, J.P. (2001). Thermal Gradient. En: Crustal Heat Flow – A Guide to Measurement and Modelling (pp. 47-87). Cambridge University Press.
  8. Beate, B.; Urquizo, M. (2015). Geothermal country update for Ecuador: 2010–2015. World Geothermal Congress, Melbourne, Australia.
  9. Beate, B.; Urquizo, M.; Lloret, A. (2020). Geothermal Country Update for Ecuador, 2015–2020. World Geothermal Congress, Reykjavik, Iceland.
  10. Bès de Berc, S.; Soula, J.C.; Baby, P.; Souris, M.; Christophoul, F.; Rosero, J. (2005). Geomorphic evidence of active deformation and uplift in a modern continental wedge-top–foredeep transition: example of the eastern Ecuadorian Andes. Tectonophysics, 399(1-4), 351-380. https://doi.org/10.1016/j.tecto.2004.12.030
  11. Brookfield, M.E.; Hemmings, D.P.; Van Straaten, P. (2009). Paleoenvironments and origin of the sedimentary phosphorites of the Napo Formation (Late Cretaceous, Oriente Basin, Ecuador). Journal of South American Earth Sciences, 28(2), 180-192. https://doi.org/10.1016/j.jsames.2009.02.004
  12. Bulot, L.G.; Kennedy, W.J.; Jaillard, E.; Robert, E. (2005). Late Middle–early Late Albian ammonites from Ecuador. Cretaceous Research, 26(3), 450-459. https://doi.org/10.1016/j.cretres.2005.01.008
  13. Burgos, J.; Baby, P.; Christophoul, F.; Soula, J.; Rochat, P. (2004). Cuantificación de las erosiones Terciarias y Plio-Cuaternarias en la parte sur de la Cuenca Oriente. En: P. Baby, M. Rivadeneira, R. Barragán (eds.). La Cuenca Oriente: Geología y Petróleo (pp. 115-130). IFEA-IRD-Petroamazonas EP.
  14. Canfield, R.W.; Bonilla, G.; Robbins, R.K. (1982). Sacha oil field of Ecuadorian Oriente. AAPG Bulletin, 66(8), 1076-1090. https://doi.org/10.1306/03B5A642-16D1-11D7-8645000102C1865D
  15. Carvalho, H.D.S.; Vacquier, V. (1977). Method for determining terrestrial heat flow in oil fields. Geophysics, 42(3), 584-593. https://doi.org/10.1190/1.1440729
  16. Christophoul, F. (1998). Comisión zona Gualaquiza, carretera Méndez-Patuca-Santiago-Morona y Cerro Macuma. Orstom-Petroproducción, Quito.
  17. Christophoul, F.; Baby, P.; Dávila, C. (2002). Stratigraphic responses to a major tectonic event in a foreland basin: the Ecuadorian Oriente from Eocene to Oligocene times. Tectonophysics, 345(1-4), 281-298. https://doi.org/10.1016/S0040-1951(01)00217-7
  18. Clauser, C. (2009). Heat Transport processes in the Earth’s Crust. Surveys in Geophysics, 30(3), 163-191. https://doi.org/10.1007/s10712-009-9058-2
  19. Dashwood, M.F.; Abbotts, I.L (1990). Aspects of the petroleum geology of the Oriente Basin, Ecuador. Geological Society, London, Special Publications, 50, 89-117. https://doi.org/10.1144/GSL.SP.1990.050.01.06
  20. Deming, D. (1989). Application of bottom-hole temperature corrections in geothermal studies. Geothermics, 18(5-6), 775-786. https://doi.org/10.1016/0375-6505(89)90106-5
  21. Díaz, M.; Baby, P.; Rivadeneira, M.; Christophoul, F. (2004). El pre-Aptense de la cuenca Oriente ecuatoriana. En: P. Baby, M. Rivadeneira, R. Barragán (eds.). La Cuenca Oriente, Geología y Petróleo (pp. 23-44). IFEA-IRD-Petroamazonas EP.
  22. ESMAP (2012). Manual de Geotermia: cómo planificar y financiar la generación de electricidad. Programa de Asistencia para la Gestión del Sector Energético (ESMAP) y Grupo del Banco Mundial.
  23. Estupiñán, J.; Marfil, R.; Permanyer, A. (2006). Diagénesis y estratigrafía secuencial de la arenisca “U” de la Fm Napo del Oriente, Ecuador. Geogaceta, 40, 283-286.
  24. Gaibor, J.; Hochuli, J.P.A.; Winkler, W.; Toro, J. (2008). Hydrocarbon source potential of the Santiago Formation, Oriente Basin, SE of Ecuador. Journal of South American Earth Sciences, 25(2), 145-156. https://doi.org/10.1016/j.jsames.2007.07.002
  25. Goldschmidt, K. (1941). Geological Compilation on the Cutucu Macuma-Cangaime Region. SHELL-Petroproducción.
  26. Gutiérrez, E.; Horton, B.; Vallejo, C.; Jackson, L.; George, S. (2019). Provenance and geochronological insights into Late Cretaceous-Cenozoic foreland basin development in the Subandean Zone and Oriente Basin of Ecuador. En: B. Horton, A. Folguera (eds.). Andean Tectonics (pp. 237-268). Elsevier. https://doi.org/10.1016/B978-0-12-816009-1.00011-3
  27. Hamza, V.; Silva, F.; Gomes, A.; Delgadilho, Z. (2005). Numerical and functional representations of regional heat flow in South America. Physics of the Earth and Planetary Interiors, 152(4), 223-256. https://doi.org/10.1016/j.pepi.2005.04.009
  28. Higley, D. (2001). The Putumayo-Oriente-Maranon Province of Colombia, Ecuador, and Peru-Mesozoic-Cenozoic and Paleozoic Petroleum Systems. U.S. Geological Survey Digital Data.
  29. Ibañez-Mejia, M.; Ruiz, J.; Valencia, V.; Cardona, A.; Gehrels, G.; Mora, A. (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 191(1-2), 58-77. https://doi.org/10.1016/j.precamres.2011.09.005
  30. Jaillard, E.; Caron, M.; Dhondt, A.; Ordóñez, M.; Andrade, R.; Bengtson, P.; Bulot, L.; Cappeta, H.; Dávila, C.; Díaz, R.; Huacho, J.; Huamán, C.; Jiménez, D.;Jiménez, N.; Montenegro, J.; Néraudeau, D.; Rivadenerira, M.; Toro, J.; Villagómez, R.; Zambrano, Í. (1997). Síntesis estratigráfica y sedimentológica del Cretáceo y Paleógeno de la cuenca oriental del Ecuador. Orstom-Petroproducción.
  31. Lin, J.; Zhang, X.; HU, Q.; Zhao, X.; Good, D.; Tong, X.; Orozco, R.; Zhang, Z; Xie, Y. (2015). Model experiments to simulate compressional-strike fault pattern in Oriente Basin, Ecuador. SPE Latin American and Caribbean Petroleum Engineering Conference, Quito, Ecuador. https://doi.org/10.2118/177175-MS
  32. Litherland, M.; Aspden, J.A.; Jemielita, R.A. (1994). Metamorphic belts of Ecuador. Overseas Geology and Mineral Resources. British Geological Survey.
  33. Liu, X.; Falcone, G.; Alimonti, C. (2018). A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs. Energy, 142, 346-355. https://doi.org/10.1016/j.energy.2017.10.058
  34. Luzieux, L.D.A.; Heller, F.; Spikings, R.; Vallejo, C.F.; Winkler, W. (2006). Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1°N and 3°S: Paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters, 249(3-4), 400-414. https://doi.org/10.1016/j.epsl.2006.07.008
  35. Macellari, C.E. (1988). Cretaceous paleogeography and depositional cycles of western South America. Journal of South American Earth Sciences, 1(4), 373-418. https://doi.org/10.1016/0895-9811(88)90024-7
  36. Mancilla, O.; Albariño, L.; Meissinger, V.; Rivadeneira, M.; Sciamanna, S. (2008). Sistemas petroleros de la cuenca Oriente, Ecuador. VII Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, Argentina.
  37. Martin-Gombojav, N.; Winkler, W. (2008). Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: implications for orogenic development of the Northern Andes. Terra Nova, 20(1), 22-31. https://doi.org/10.1111/j.1365-3121.2007.00782.x
  38. Mello, M.R.; Koutsoukos, E.; Erazo, W. (1995). The Napo Formation, Oriente Basin, Ecuador: Hydrocarbon source potential and paleoenvironmental assessment. En: Katz, B.J. (eds.). Petroleum Source Rocks (pp. 167-181). https://doi.org/10.1007/978-3-642-78911-3_10
  39. Moeck, I. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867-882. https://doi.org/10.1016/j.rser.2014.05.032
  40. Ordóñez, M.; Jiménez, N.; Suárez, J. (2006). Micropaleontologia ecuatoriana: Datos bioestratigráficos y paleoecológicos de las cuencas: Graben de Jambelí. Progreso. Manabí, Esmeraldas y Oriente; del levantamiento de la Península de Santa Elena, y de las cordilleras Colonche, costera y occidental. Petroproducción.
  41. PETROECUADOR EP. (2012). Informe estadístico de la industria hidrocarburífera Ecuatoriana 1972- 2012.
  42. Richter, A. (2021). The first geothermal power unit has started operations in Colombia, utilizing co-produced fluids from oil production. https://www.thinkgeoenergy.com/first-geothermal-power-plant-inaugurated-in-colombia/
  43. Rivadeneira, M. (1986). Evaluación geoquímica de rocas madres de la Cuenca Amazónica Ecuatoriana. IV Congreso Ecuatoriano de Geología, Minas y Petróleo, Quito, Ecuador.
  44. Rivadeneira, M.; Baby, P. (1999). La Cuenca Oriente: estilo tectónico, etapas de deformación y características de los principales campos de Petroproducción. Informe técnico. IRD-Petroamazonas.
  45. Rivadeneira, M.; Baby, P. (2004). Características geológicas generales de los principales campos petroleros de Petroproducción. En: P. Baby, M. Rivadeneira, R. Barragán (eds.). La Cuenca Oriente, Geología y Petróleo (pp. 229-295). IFEA-IRD-Petroamazonas EP.
  46. Rivadeneira, M.; Almeida, P. (2014). Características de los reservorios Cretácicos de la cuenca Oriente. En: P. Baby, M. Rivadeneira, R. Barragán (eds.). La Cuenca Oriente, Geología y Petróleo (pp. 279-326). IFEA-IRD-Petroamazonas EP.
  47. Romero, C. (2018). Identificación y caracterización de Facies de la Formación Hollín en Centro Shaime: El registro de una transición fluvio-marina en la región Sur Oriental del Ecuador. Tesis, Escuela Politécnica Nacional, Quito, Ecuador.
  48. Romero, C.; Rivadeneira, M.; Calderon, E.; Naranjo, M.; Meneses, M.; Gramal, A.; Toainga, S. (2019). Reconstruyendo el pasado del planeta: El registro estratigráfico y sedimentológico de la Formación Tena en la carretera Tiwintza–Puerto Morona. GeoLatitud, 2(2), 2-13.
  49. Romero, C.; Escobar, V.; Calderón, D.; Menéndez, B.; Gallardo, A.; Gramal, A.; Vélez, T.; Condoy, D. (2021). La evolución de abanicos aluviales documentada en el registro estratigráfico de la Formación Tiyuyacu. GeoLatitud, 4(1), 15.
  50. Romeuf, N.; Aguirre, L.; Soler, P.; Feraud, G.; Jaillard, E.; Ruffet, G. (1995). Middle Jurassic volcanism in the Northern and Central Andes. Andean Geology, 22(2), 245-259.
  51. Ruiz, G.M.H.; Seward, D.; Winkler W. (2007). Evolution of the Amazon Basin in Ecuador with special reference to hinterland tectonics: data from zircon fission-track and heavy mineral analysis. Developments in Sedimentology, 58, 907-934. https://doi.org/10.1016/S0070-4571(07)58036-2
  52. Saemundsson, K.; Axelsson, G.; Straingrimsson, B. (2009). Geothermal system in global perspective. Short Course on Geothermal Drilling, Resource Development and Power Plants, El Salvador.
  53. Sass, I.; Götz, A.E. (2012). Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24(2), 142-147. https://doi.org/10.1111/j.1365-3121.2011.01048.x
  54. Shanmugam, G.; Poffenberger, M.; Toro, J. (2000). Tide-dominated estuarine facies in the Hollin and Napo (“T” and “U”) Formations (Cretaceous), Sacha field, Oriente basin, Ecuador. AAPG Bulletin, 84(5), 652-682. https://doi.org/10.1306/C9EBCE7D-1735-11D7-8645000102C1865D
  55. Smith, L. (1989). Regional Variations in Formation Water Salinity, Hollin and Napo Formations (Cretaceous), Oriente Basin, Ecuador. AAPG Bulletin, 73(6), 757-776. https://doi.org/10.1306/44B4A258-170A-11D7-8645000102C1865D
  56. Spikings, R.A.; Crowhurst, P.V.; Winkler, W.; Villagomez, D. (2010). Syn- and post-accretionary cooling history of the Ecuadorian Andes constrained by their in-situ and detrital thermochronometric record. Journal of South American Earth Sciences, 30(3-4), 121-133. https://doi.org/10.1016/j.jsames.2010.04.002
  57. Tschopp, H.J. (1953). Oil explorations in the Oriente of Ecuador, 1938-1950. AAPG Bulletin, 37(10), 2303-2347. https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D
  58. Vallejo, C.; Hochuli, P.; Winkler, W.; von Salis, K. (2002). Palynological and sequence stratigraphic analysis of the Napo Group in the Pungarayacu 30 well, Sub-Andean Zone, Ecuador. Cretaceous Research, 23(6), 845-859. https://doi.org/10.1006/cres.2002.1028
  59. Vallejo, C.; Tapia, D.; Gaibor, J.; Steel, R.; Cardenas, M.; Winkler, W.; Valdez, A.; Esteban, J.; Figuera, M.; Leal, J.; Cuenca, D. (2017). Geology of the Campanian M1 sandstone oil reservoir of eastern Ecuador: A delta system sourced from the Amazon Craton. Marine and Petroleum Geology, 86, 1207-1223. https://doi.org/10.1016/j.marpetgeo.2017.07.022
  60. Vallejo, C.; Romero, C.; Horton, B.K.; Spikings, R.A.; Gaibor, J.; Winkler, W.; Esteban, J.J.; Thomsen, T.B.; Mariño, E. (2021). Jurassic to Early Paleogene sedimentation in the Amazon region of Ecuador: Implications for the paleogeographic evolution of northwestern South America. Global and Planetary Change, 204. https://doi.org/10.1016/j.gloplacha.2021.103555
  61. Vera, R. (2016). Geology of Ecuador: An introduction to the unique geology of Ecuador. 2da edición. Elsevier.
  62. Wang, S.; Yan, J.; Li, F.; Hu, J.; Li, K. (2016). Exploitation and utilization of oilfield geothermal resources in China. Energies, 9(10). https://doi.org/10.3390/en9100798
  63. Wang, K.; Yuan, B.; Ji, G.; Wu, X. (2018). A comprehensive review of geothermal energy extraction and utilization in oilfields. Journal of Petroleum Science and Engineering, 168, 465-477. https://doi.org/10.1016/j.petrol.2018.05.012
  64. White, H.J.; Skopec, R.; Ramírez, F.; Rodas, J.; Bonilla, G. (1995). Reservoir characterizations of the Hollin and Napo formations, western Oriente basin, Ecuador. En: A.J. Tankard, R. Suárez, H.J. Welsink (eds.). Petroleum basins of South America (pp. 573-596). AAPG. https://doi.org/10.1306/M62593C30
  65. Willet, S.; Chapman, D. (1987). Analysis of Temperatures and Thermal Processes in the Uinta Basin. En: C. Beaumont y A.J. Tankard (eds.). Sedimentary Basins and Basin Forming Mechanisms (pp. 447-461). AAPG.
  66. Yinfu, X.; Jihancheng; Yongdi, S.; Ying, H. (2010). Petroleum geology and exploration potential of Oriente-Maranon Basin. Petroleum Exploration and Development, 37(1), 51-56. https://doi.org/10.1016/S1876-3804(10)60014-6
  67. Zhang, J.; Cho, H.; Knizley, A. (2016). Evaluation of financial incentives for combined heat and power (CHP) systems in U.S. regions. Renewable and Sustainable Energy Reviews, 59, 738-762. https://doi.org/10.1016/j.rser.2016.01.012
  68. Zhongzhen, M.A.; Chen, H.; Yinfu, X.; Zhiwei, Z.; Yaming, L.; Xiaofa, Y.; Yubing, Z.; Dandan, W. (2017). Division and resources evaluation of hydrocarbon plays in Putumayo-Oriente-Marañon Basin, South America. Petroleum Exploration and Development, 44(2), 247-256. https://doi.org/10.1016/S1876-3804(17)30027-7