Análisis de factores y modelación multifractal concentración-área para la delimitación de anomalías pedogeoquímicas complejas en el sector Loma Roja-Loma Hierro, Cuba occidental
Publicado 2022-07-07
Palabras clave
- Depósitos Sedex,
- Anomalías pedogeoquímicas,
- Análisis de datos composicional,
- Transformación log-cociente,
- Análisis de factores
- Modelación multifractal ...Más
Cómo citar
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Altmetrics
Resumen
El sector Loma Roja-Loma Hierro se localiza en la parte septentrional del distrito metalogénico Dora-Francisco, noroccidente de Cuba. Este estudio ha estado dirigido a delimitar las anomalías pedogeoquímicas complejas asociadas a depósitos minerales tipo Sedex, mediante la aplicación combinada del análisis de factores y la modelación multifractal. Fueron utilizados los resultados analíticos de 1801 muestras de suelos; se seleccionaron aquellos que corresponden a diferentes elementos indicadores y exploradores (Ag, As, Ba, Bi, Cu, Pb, Sb y Zn). Previo a la aplicación de los métodos estadísticos, se requirió la conversión de datos cerrados a datos abiertos mediante una transformación log-cociente aditiva (alr), para evitar que las correlaciones entre los elementos sean espurias. La aplicación del análisis de correlación y el análisis de factores a estas variables geoquímicas transformadas permitió definir los vínculos entre elementos indicadores y exploradores, así como la obtención de dos variables geoquímicas complejas, cada una de ellas representativa de un determinado estilo de mineralización. Las puntuaciones asignadas a estas variables geoquímicas complejas fueron convertidas a valores en rangos [0-1] utilizando una función logística fuzzy. La estimación de los umbrales anómalos se derivó de los diagramas concentración-área generados a partir de la aplicación del análisis fractal a las variables geoquímicas complejas transformadas, previamente interpoladas con kriging ordinario. Los mapas geoquímicos multielementales evidencian dos zonas mineralizadas con características distintivas: una situada al norte representada por anomalías pedogeoquímicas de Bi-Cu-As, asociadas con las raíces de stockwork cuarzo-cuprífero, y otra localizada en la mitad meridional con anomalías pedogeoquímicas de Ba-Ag-Zn-Sb-Pb, relacionada con la mineralización estratiforme pirito-polimetálica.
Descargas
Referencias
- Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall.
- Ali, K.; Cheng, Q.; Li, W.; Chen, Y. (2006). Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in south-central Yunnan Province, China. Geochemistry: Exploration, Environment, Analysis, 6(4), 341-348. https://doi.org/10.1144/1467-7873/06-109
- Baldé, A.; Lastra-Rivero, J.F. (2018). Aplicación integrada de la estadística multivariada y análisis fractal a datos litogeoquímicos en el distrito metalogénico Dora-Francisco, Pinar del Río. Minería y Geología, 34(2), 140-154.
- Batista, A.C.; Ferreira da Silva, E.A.; Azevedo, M.C.C.; Sousa, A.J.; Cardoso-Fonseca, E. (2002). Soil data analysis from central Portugal by Principal Component Analysis and geostatistical techniques. Geochemistry: Exploration, Environment, Analysis, 2(1), 15-25. https://doi.org/10.1144/1467-787302-002
- Burov, V.; Martínez, D.; Jusainov, Y.; Fernández, R.; Derbenev, V.; Uspensky, A. (1986). Informe sobre los trabajos de levantamiento geológico a escala 1:50 000 realizados en la parte occidental de la provincia Pinar del Río (hojas 3382-I, IV; 3383-I, II, II; 3482-IV-a, c; 3483-III-c). Oficina Nacional de Recursos Minerales. La Habana.
- Carranza, E.J.M. (2009). Fractal analysis of geochemical anomalies. In: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS (pp. 85-114). Chapter 4. Elsevier. https://doi.org/10.1016/S1874-2734(09)70008-7
- Carranza, E.J.M. (2010a). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10(2), 171-187. https://doi.org/10.1144/1467-7873/09-223
- Carranza, E.J.M. (2010b). Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10(4), 365-381. https://doi.org/10.1144/1467-7873/09-224
- Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using logratiotransformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-185. https://doi.org/10.1016/j.gexplo.2011.05.007
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279-300. https://doi.org/10.1023/A:1023818214614
- Galletti, A.; Maratea, A. (2017). Mapping the reliability of the additive log-ratio transformation. International Journal of Internet Technology and Secured Transactions, 7(1), 71-87. https://doi.org/10.1504/IJITST.2017.085736
- Ghasemzadeh, S.; Maghsoudia, A.; Yousefi, M.; Mihalaskyc, M.J. (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geology Reviews, 113, 103115. https://doi.org/10.1016/j.oregeorev.2019.103115
- Good, I.J. (1983). The philosophy of exploratory data analysis. Philosophy of Science, 50(2), 283-295. https://doi.org/10.1086/289110
- Huang, J.; Zhao, P. (2015). Application of a multifractal model for identification of Cu, Au and Zn anomalies in Western Yunnan, Southwestern China. Geochemistry: Exploration, Environment, Analysis, 15(1), 54-61. https://doi.org/10.1144/geochem2014-286
- Khammar, F.; Yousefi, S.; Joonaghani, S.A. (2021). Analysis of lithogeochemical data using log-ratio transformations and C-A fractal to separate geochemical anomalies in Tak-Talar, Iran. Arabian Journal of Geosciences, 14(8), 686. https://doi.org/10.1007/s12517-021-06920-y
- Lima, A.; Plant, J.A.; De Vivo, B.; Tarvainen, T.; Albanese, S.; Cicchella, D. (2008). Interpolation methods for geochemical maps: a comparative study using arsenic data from European stream waters. Geochemistry: Exploration, Environment, Analysis, 8(1), 41-48. https://doi.org/10.1144/1467-7873/07-146
- Miesch, A.T. (1981). Estimation of the geochemical threshold and its statistical significance. Journal of Geochemical Exploration, 16(1), 49-76. https://doi.org/10.1016/0375-6742(81)90125-4
- Nazarpour, A.; Omran, N.R.; Paydar, G.R.; Sadeghi, B.; Matroud, F.; Nejad, A.M. (2015). Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Geochemistry, 75(1), 117-132. https://doi.org/10.1016/j.chemer.2014.11.002
- Panahi, A.; Cheng, Q.; Bonham-Carter, G.F. (2004). Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power spectrum analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment, Analysis, 4(1), 59-70. https://doi.org/10.1144/1467-7873/03-023
- Reimann, C.; Filzmoser, P.; Garrett, R.G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), 185-206. https://doi.org/10.1016/S0883-2927(01)00066-X
- Sinclair, A.J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3(2), 129-149. https://doi.org/10.1016/0375-6742(74)90030-2
- Sinclair, A.J. (1991). A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. Journal of Geochemical Exploration, 41(1-2), 1-22. https://doi.org/10.1016/0375-6742(91)90071-2
- Stanley, C.R.; Sinclair, A.J. (1987). Anomaly recognition for multi-element geochemical data: A background characterization approach. Journal of Geochemical Exploration, 29(1-3), 333-353. https://doi.org/10.1016/0375-6742(87)90085-9
- Stanley, C.R.; Sinclair, A.J. (1989). Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data. Journal of Geochemical Exploration, 32(1-3), 355-357. https://doi.org/10.1016/0375-6742(89)90076-9
- Tripathi, V.S. (1979). Factor analysis in geochemical exploration. Journal of Geochemical Exploration, 11(3), 263-275. https://doi.org/10.1016/0375-6742(79)90004-9
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35. https://doi.org/10.1016/j.gexplo.2012.02.002
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45-58. https://doi.org/10.1144/geochem2012-144
- Yuan, F.; Li, X.; Zhou, T.; Deng, Y.; Zhang, D.; Xu, C.; Zhang, R.; Jia, C.; Jowitt, S.M. (2015). Multifractal modelling-based mapping and identification of geochemical anomalies associated with Cu and Au mineralisation in the NW Junggar area of northern Xinjiang Province, China. Journal of Geochemical Exploration, 154, 252-264. https://doi.org/10.1016/j.gexplo.2014.11.015
- Zhao, J.; Chen, S.; Zuo, R. (2017). Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry: Exploration, Environment, Analysis, 17(3), 239-251. https://doi.org/10.1144/geochem2016-013
- Zhao, J.; Wang, W.; Cheng, Q.; Agterberg, F. (2016). Mapping of Fe mineral potential by spatially weighted principal component analysis in the eastern Tianshan mineral district, China. Journal of Geochemical Exploration, 164, 107-121. https://doi.org/10.1016/j.gexplo.2015.11.004
- Zheng, C.; Liu, P.; Luo, X.; Wen, M.; Huang, W.; Liu, G.; Wu, X.; Chen, Z.; Albanese, S. (2021). Application of compositional data analysis in geochemical exploration for concealed deposits: A case study of Ashele copper-zinc deposit, Xinjiang, China. Applied Geochemistry, 130, 104997. https://doi.org/10.1016/j.apgeochem.2021.104997
- Ziaii, M.; Carranza, E.J.M.; Ziaei, M. (2011). Application of geochemical zonality coefficients in mineral prospectivity mapping. Computers & Geosciences, 37(12), 1935-1945. https://doi.org/10.1016/j.cageo.2011.05.009
- Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, 170-176. https://doi.org/10.1016/j.gexplo.2013.08.013
- Zuo, R.; Xia, Q.; Wang, H. (2013). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry, 28, 202-211. https://doi.org/10.1016/j.apgeochem.2012.10.031
- Zuo, R.; Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33-41. https://doi.org/10.1016/j.gexplo.2015.04.010