Estimación del factor de aplanamiento de la inclinación magnética y sus implicaciones en los modelos tectónicos del Jurásico en la margen NW de Suramérica
Publicado 2024-06-14
Palabras clave
- Cordillera Oriental,
- Susceptibilidad magnética,
- Corrección,
- Curve fit,
- Paleolatitud
Cómo citar
Derechos de autor 2024 Boletín de Geología
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Altmetrics
Resumen
Las reconstrucciones paleogeográficas y los modelos tectónicos se complementan con el paleomagnetismo, ya que las rotaciones son calculadas con base en la declinación magnética y las paleolatitudes se derivan de la inclinación magnética. Los procesos de enterramiento y compactación en rocas siliciclásticas pueden causar aplanamiento de la inclinación y por tanto una subestimación de la paleolatitud. Aunque diferentes técnicas se han propuesto para calcular el factor del aplanamiento, estas requieren conjuntos de datos significativamente altos y procesos de laboratorio tediosos o sofisticados. Este trabajo propone calcular el factor de aplanamiento de la inclinación magnética mediante la combinación de técnicas rutinarias como la Anisotropía de la Susceptibilidad Magnética (ASM) y el paleomagnetismo. Se reportan resultados de ASM en 63 muestras del Grupo Girón, como complemento para el cálculo de la corrección de la inclinación magnética para un total de 103 sitios en rocas del Triásico al Cenozoico distribuidos en la Cordillera Oriental, Macizo de Santander y Catatumbo. Se aplicaron 4 filtros a los datos disponibles y se elaboraron 4 modelos curve fit. El valor medio del factor de aplanamiento calculado muestra un factor de 1,04 ± 0,6, sugiriendo que la inclinación magnética no ha sido afectada por aplanamiento y los valores de las paleolatitudes no varían significativamente. Un error tan alto se debe a que hay una mezcla de 2 grupos de datos, uno con inclinaciones someras y latitudes cercanas a su posición actual y otro con inclinaciones mayores y latitudes en el hemisferio sur. Por esto, se aplicó un filtro de inclinaciones muy altas y bajas, dejando las intermedias, obteniendo un nuevo factor de aplanamiento de 0,93 ± 0,22. El método de corrección usando el filtro de inclinaciones muy altas y bajas en datos de la Cordillera Oriental es efectivo para corregir inclinaciones intermedias-altas en rocas del Jurásico Inferior.
Descargas
Referencias
- Bayona, G.; Rapalini, A.; Costanzo-Alvarez, V. (2006). Paleomagnetism in Mesozoic rocks of the northern Andes and its implications in Mesozoic tectonics of northwestern South America. Earth, Planets, and Space, 58, 1255-1272. https://doi.org/10.1186/BF03352621
- Bayona, G.; Jiménez, G.; Silva, C.; Cardona, A.; Montes, C.; Roncancio, J.; Cordani, U. (2010). Paleomagnetic data and K-Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4), 817-831. https://doi.org/10.1016/j.jsames.2009.10.005
- Bayona, G.; Bustamante, C.; Nova, G.; Salazar-Franco, A.M. (2020). Jurassic evolution of the Northwestern Corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. En: J. Gómez, A.O. Pinilla-Pachon (eds). The Geology of Colombia (pp. 171-207). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.05
- Bilardello, D.; Kodama, K.P. (2010). Rock magnetic evidence for inclination shallowing in the early Carboniferous Deer Lake Group red beds of western Newfoundland. Geophysical Journal International, 181(1), 275-289. https://doi.org/10.1111/j.1365-246X.2010.04537.x
- Borradaile, G.J. (1988). Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156(1-2), 1-20. https://doi.org/10.1016/0040-1951(88)90279-X
- Butler, R.F. (1992). Paleomagnetism: Magnetic domains to geological terranes. Blackwell Scientific Publications.
- Caballero. M. (2011). La fábrica magnética a partir de la anisotropía de susceptibilidad magnética (AMS): sus bases generales y ejemplos como auxiliar para determinar direcciones, fuentes y dinámicas de flujo. Monografía, Universidad Nacional Autónoma de México.
- Castillo, J.; Gose, W.A.; Perarnau, A. (1991). Paleomagnetic results from Mesozoic strata in the Mérida Andes, Venezuela. Journal of Geophysical Research: Solid Earth, 96(B4), 6011-6022. https://doi.org/10.1029/90JB02282
- Collombat, H.; Rochette, P.; Kent, D.V. (1993). Detection and correction of inclination shallowing in deep sea sediments using the anisotropy of anhysteretic remanence. Bulletin de la Societe Géologique de France, 164(1), 103-111.
- Creer, K.M.; Embleton, B.J.J.; Valencio, D.A. (1970). Triassic and Permo-Triassic palaeomagnetic data for South America. Earth and Planetary Science Letters, 8(2), 173-178. https://doi.org/10.1016/0012-821X(70)90169-X
- Deamer, G.A.; Kodama, K.P. (1990). Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. Journal of Geophysical Research: Solid Earth, 95(B4), 4511-4529. https://doi.org/10.1029/JB095iB04p04511
- Etayo-Serna, F. (1989). Análisis facial del inicio del avance marino del Cretácico en la región SW del Macizo de Santander. V Congreso Colombiano de Geología. Bucaramanga, Colombia.
- Garcés, M.; Parés, J.M.; Cabrera, L. (1996a). Further evidence for inclination shallowing in red beds. Geophysical Research Letters, 23(16), 2065-2068. https://doi.org/10.1029/96GL02060
- Garcés, M.; Parés, J.M.; Cabrera, L. (1996b). Inclination error linked to sedimentary facies in Miocene detrital sequences from the Valles- Penedes Basin (NE Spain). Geological Society, London, Special Publications, 105, 91-99. https://doi.org/10.1144/gsl.sp.1996.105.01.08
- García-Lasanta, C.; Oliva-Urcia, B.; Román-Berdiel, T.; Casas, A.M.; Gil-Peña, I.; Sánchez-Moya, Y.; Sopeña, A.; Hirt, A.M.; Mattei, M. (2015). Evidence for the Permo-Triassic transtensional rifting in the Iberian Range (NE Spain) according to magnetic fabrics results. Tectonophysics, 651-652, 216-231. https://doi.org/10.1016/j.tecto.2015.03.023
- García, H.; Jiménez, G. (2016). Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications. Journal of South American Sciences, 69, 243-258. https://doi.org/10.1016/j.jsames.2016.04.002
- Gilder, S.; Chen, Y.; Cogné, J.P.; Tan, X.; Courtillot, V.; Sun, D.; Li, Y. (2003). Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron. Earth Planetary Science Letters, 206(3-4), 587-600. https://doi.org/10.1016/S0012-821X(02)01074-9
- Gose, W.A.; Perarnau, A.; Castillo, J. (2003). Paleomagnetic results from the Perijá Mountains, Venezuela: An example of vertical axis rotation. En: C. Bartollini, R.T. Buffler, J.F. Blickwede (eds.). The Circum-Gulf of Mexico and Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics (pp. 969-975). AAPG Memoir 79. https://doi.org/10.1306/M79877C44
- Hargraves, R.B.; Shagam, R.; Vargas, R.; Rodriguez, G.I. (1984). Paleomagnetic results from rhyolites (Early Cretaceous?) and andesite dikes at two localities in the Ocaña area, northern Santander Massif, Colombia. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.) The Caribbean–South American Plate Boundary and Regional Tectonics (pp. 299-302). Geological Society of America, Memoir 162. https://doi.org/10.1130/MEM162-p299
- Hrouda, F. (1982). Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5(1), 37-82. https://doi.org/10.1007/BF01450244
- Jackson, M.J.; Banerjee, S.K.; Marvin, J.A.; Lu, R.; Gruber, W. (1991). Detrital remanence, inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophysical Journal International, 104(1), 95-103. https://doi.org/10.1111/j.1365-246X.1991.tb02496.x
- Jelinek, V. (1978). Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22(1), 50-62. https://doi.org/10.1007/BF01613632
- Jelinek, V. (1981). Characterization to the magnetic fabric of rocks. Tectonophysics, 79(3-4), T63-T67. https://doi.org/10.1016/0040-1951(81)90110-4
- Jiménez, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A. (2014). Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and nonrotational reactivation of a Mesozoic intracontinental rift. Tectonics, 33(11), 2233-2260. https://doi.org/10.1002/2014TC003532
- Jiménez, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A. (2015). Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a ≤3 mm/yr slip rate for the Bucaramanga-Santa Marta Fault, Colombia. Journal of South American Earth Sciences, 57, 12-22, https://doi.org/10.1016/j.jsames.2014.11.001
- Jiménez, G.; García-Delgado, H.; Geissman, J.W. (2021). Magnetostratigraphy and magnetic properties of the Jurassic to Lower Cretaceous Girón Group (northern Andes, Colombia). Geosphere, 17(6), 2172-2196. https://doi.org/10.1130/GES02186.1
- Jiménez, G.; Geissman, J.W.; Bayona, G. (2022). Unraveling tectonic inversion and wrench deformation in the Eastern Cordillera (Northern Andes) with paleomagnetic and AMS data. Tectonophysics, 834, 229356. https://doi.org/10.1016/j.tecto.2022.229356
- Jiménez, G.; García, C.A. (2023). Mineralogía magnética en rocas del Jurásico de la Cordillera Oriental de Colombia. Boletín de Geología, 45(2), 35-49. https://doi.org/10.18273/revbol.v45n2-2023002
- King, R.F. (1955). The remanent magnetism of artificially deposited sediments. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 7(3), 115-134. https://doi.org/10.1111/j.1365-246X.1955.tb06558.x
- Kodama, K.P. (1997). A successful rock magnetic technique for correcting paleomagnetic inclination shallowing: Case study of the Nacimiento Formation, New Mexico. Journal of Geophysical Research: Solid Earth, 102(B3), 5193-5206. https://doi.org/10.1029/96JB03833
- Kodama, K.P. (2009). Simplification of the anisotropy-based inclination correction technique for magnetite- and haematite-bearing rocks: a case study for the Carboniferous Glenshaw and Mauch Chunk Formations, North America. Geophysical Journal International, 176(2), 467-477. https://doi.org/10.1111/j.1365-246X.2008.04013.x
- Kodama, K.P. (2012). Paleomagnetism of Sedimentary Rocks: Process and Interpretation. Wiley-Blackwell.
- Li, Y.X.; Kodama, K.P. (2016). Detecting and Correcting for Paleomagnetic Inclination Shallowing of Sedimentary Rocks: A Review. Frontiers in Earth Science, 4, 1-6. https://doi.org/10.3389/feart.2016.00007
- Martín-Hernández, F.; Hirt, A.M. (2003). The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics, 367(1-2), 13-28. https://doi.org/10.1016/S0040-1951(03)00127-6
- Maze, W.B.; Hargraves, R.B. (1984). Paleomagnetic results from the Jurassic La Quinta Formation in the Perijá Range, Venezuela, and their tectonic significance. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.). The Caribbean–South American Plate Boundary and Regional Tectonics (pp. 287-294). Geological Society of America, Memoir 162. https://doi.org/10.1130/MEM162-p287
- Nova, G.; Montaño, P.; Bayona, G.; Rapalini, A.; Montes, C. (2012). Paleomagnetismo en rocas del Jurásico y Cretácico Inferior en el flanco occidental de la Serranía del Perijá; Contribuciones a la evolución tectónica del NW de Suramérica. Boletín de Geología, 34(2), 117-138.
- Parés, J.M.; van der Pluijm, B. (2002). Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 350(4), 283-298. https://doi.org/10.1016/S0040-1951(02)00119-1
- Rochette, P. (1987). Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 9(8), 1015-1020. https://doi.org/10.1016/0191-8141(87)90009-5
- Rochette, P.; Jackson, M.; Aubourg, C. (1992). Rock magnetism and interpreting of anisotropy of magnetic susceptibility. Reviews of Geophysics, 30(3), 209-226. https://doi.org/10.1029/92RG00733
- Tan, X.; Kodama, K. P. (2002). Magnetic anisotropy and paleomagnetic inclination shallowing in red beds: evidence from the Mississippian Mauch Chunk Formation, Pennsylvania. Journal of Geophysical Research: Solid Earth, 107(B11), 1-17. https://doi.org/10.1029/2001JB001636
- Tarling, D.H.; Hrouda, F. (1993). The magnetic anisotropy of rocks. Chapman & Hall.
- Tauxe, L.; Kodama, K.P.; Kent, D.V. (2008). Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach. Physics of the Earth and Planetary Interiors, 169(1-4), 152-165. https://doi.org/10.1016/j.pepi.2008.05.006