Vol. 46 Núm. 2 (2024): Boletín de Geología
Artículos científicos

Estimación del factor de aplanamiento de la inclinación magnética y sus implicaciones en los modelos tectónicos del Jurásico en la margen NW de Suramérica

Santiago Rodríguez-Chavarro
Universidad Industrial de Santander
Giovanny Jiménez
Universidad Industrial de Santander
Paul Goyes-Peñafiel
Universidad Industrial de Santander

Publicado 2024-06-14

Palabras clave

  • Cordillera Oriental,
  • Susceptibilidad magnética,
  • Corrección,
  • Curve fit,
  • Paleolatitud

Cómo citar

Rodríguez-Chavarro, S., Jiménez, G., & Goyes-Peñafiel, P. (2024). Estimación del factor de aplanamiento de la inclinación magnética y sus implicaciones en los modelos tectónicos del Jurásico en la margen NW de Suramérica. Boletín De Geología, 46(2), 13–30. https://doi.org/10.18273/revbol.v46n2-2024001

Altmetrics

Resumen

Las reconstrucciones paleogeográficas y los modelos tectónicos se complementan con el paleomagnetismo, ya que las rotaciones son calculadas con base en la declinación magnética y las paleolatitudes se derivan de la inclinación magnética. Los procesos de enterramiento y compactación en rocas siliciclásticas pueden causar aplanamiento de la inclinación y por tanto una subestimación de la paleolatitud. Aunque diferentes técnicas se han propuesto para calcular el factor del aplanamiento, estas requieren conjuntos de datos significativamente altos y procesos de laboratorio tediosos o sofisticados. Este trabajo propone calcular el factor de aplanamiento de la inclinación magnética mediante la combinación de técnicas rutinarias como la Anisotropía de la Susceptibilidad Magnética (ASM) y el paleomagnetismo. Se reportan resultados de ASM en 63 muestras del Grupo Girón, como complemento para el cálculo de la corrección de la inclinación magnética para un total de 103 sitios en rocas del Triásico al Cenozoico distribuidos en la Cordillera Oriental, Macizo de Santander y Catatumbo. Se aplicaron 4 filtros a los datos disponibles y se elaboraron 4 modelos curve fit. El valor medio del factor de aplanamiento calculado muestra un factor de 1,04 ± 0,6, sugiriendo que la inclinación magnética no ha sido afectada por aplanamiento y los valores de las paleolatitudes no varían significativamente. Un error tan alto se debe a que hay una mezcla de 2 grupos de datos, uno con inclinaciones someras y latitudes cercanas a su posición actual y otro con inclinaciones mayores y latitudes en el hemisferio sur. Por esto, se aplicó un filtro de inclinaciones muy altas y bajas, dejando las intermedias, obteniendo un nuevo factor de aplanamiento de 0,93 ± 0,22. El método de corrección usando el filtro de inclinaciones muy altas y bajas en datos de la Cordillera Oriental es efectivo para corregir inclinaciones intermedias-altas en rocas del Jurásico Inferior.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Bayona, G.; Rapalini, A.; Costanzo-Alvarez, V. (2006). Paleomagnetism in Mesozoic rocks of the northern Andes and its implications in Mesozoic tectonics of northwestern South America. Earth, Planets, and Space, 58, 1255-1272. https://doi.org/10.1186/BF03352621
  2. Bayona, G.; Jiménez, G.; Silva, C.; Cardona, A.; Montes, C.; Roncancio, J.; Cordani, U. (2010). Paleomagnetic data and K-Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, 29(4), 817-831. https://doi.org/10.1016/j.jsames.2009.10.005
  3. Bayona, G.; Bustamante, C.; Nova, G.; Salazar-Franco, A.M. (2020). Jurassic evolution of the Northwestern Corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. En: J. Gómez, A.O. Pinilla-Pachon (eds). The Geology of Colombia (pp. 171-207). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.05
  4. Bilardello, D.; Kodama, K.P. (2010). Rock magnetic evidence for inclination shallowing in the early Carboniferous Deer Lake Group red beds of western Newfoundland. Geophysical Journal International, 181(1), 275-289. https://doi.org/10.1111/j.1365-246X.2010.04537.x
  5. Borradaile, G.J. (1988). Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156(1-2), 1-20. https://doi.org/10.1016/0040-1951(88)90279-X
  6. Butler, R.F. (1992). Paleomagnetism: Magnetic domains to geological terranes. Blackwell Scientific Publications.
  7. Caballero. M. (2011). La fábrica magnética a partir de la anisotropía de susceptibilidad magnética (AMS): sus bases generales y ejemplos como auxiliar para determinar direcciones, fuentes y dinámicas de flujo. Monografía, Universidad Nacional Autónoma de México.
  8. Castillo, J.; Gose, W.A.; Perarnau, A. (1991). Paleomagnetic results from Mesozoic strata in the Mérida Andes, Venezuela. Journal of Geophysical Research: Solid Earth, 96(B4), 6011-6022. https://doi.org/10.1029/90JB02282
  9. Collombat, H.; Rochette, P.; Kent, D.V. (1993). Detection and correction of inclination shallowing in deep sea sediments using the anisotropy of anhysteretic remanence. Bulletin de la Societe Géologique de France, 164(1), 103-111.
  10. Creer, K.M.; Embleton, B.J.J.; Valencio, D.A. (1970). Triassic and Permo-Triassic palaeomagnetic data for South America. Earth and Planetary Science Letters, 8(2), 173-178. https://doi.org/10.1016/0012-821X(70)90169-X
  11. Deamer, G.A.; Kodama, K.P. (1990). Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. Journal of Geophysical Research: Solid Earth, 95(B4), 4511-4529. https://doi.org/10.1029/JB095iB04p04511
  12. Etayo-Serna, F. (1989). Análisis facial del inicio del avance marino del Cretácico en la región SW del Macizo de Santander. V Congreso Colombiano de Geología. Bucaramanga, Colombia.
  13. Garcés, M.; Parés, J.M.; Cabrera, L. (1996a). Further evidence for inclination shallowing in red beds. Geophysical Research Letters, 23(16), 2065-2068. https://doi.org/10.1029/96GL02060
  14. Garcés, M.; Parés, J.M.; Cabrera, L. (1996b). Inclination error linked to sedimentary facies in Miocene detrital sequences from the Valles- Penedes Basin (NE Spain). Geological Society, London, Special Publications, 105, 91-99. https://doi.org/10.1144/gsl.sp.1996.105.01.08
  15. García-Lasanta, C.; Oliva-Urcia, B.; Román-Berdiel, T.; Casas, A.M.; Gil-Peña, I.; Sánchez-Moya, Y.; Sopeña, A.; Hirt, A.M.; Mattei, M. (2015). Evidence for the Permo-Triassic transtensional rifting in the Iberian Range (NE Spain) according to magnetic fabrics results. Tectonophysics, 651-652, 216-231. https://doi.org/10.1016/j.tecto.2015.03.023
  16. García, H.; Jiménez, G. (2016). Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications. Journal of South American Sciences, 69, 243-258. https://doi.org/10.1016/j.jsames.2016.04.002
  17. Gilder, S.; Chen, Y.; Cogné, J.P.; Tan, X.; Courtillot, V.; Sun, D.; Li, Y. (2003). Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron. Earth Planetary Science Letters, 206(3-4), 587-600. https://doi.org/10.1016/S0012-821X(02)01074-9
  18. Gose, W.A.; Perarnau, A.; Castillo, J. (2003). Paleomagnetic results from the Perijá Mountains, Venezuela: An example of vertical axis rotation. En: C. Bartollini, R.T. Buffler, J.F. Blickwede (eds.). The Circum-Gulf of Mexico and Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics (pp. 969-975). AAPG Memoir 79. https://doi.org/10.1306/M79877C44
  19. Hargraves, R.B.; Shagam, R.; Vargas, R.; Rodriguez, G.I. (1984). Paleomagnetic results from rhyolites (Early Cretaceous?) and andesite dikes at two localities in the Ocaña area, northern Santander Massif, Colombia. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.) The Caribbean–South American Plate Boundary and Regional Tectonics (pp. 299-302). Geological Society of America, Memoir 162. https://doi.org/10.1130/MEM162-p299
  20. Hrouda, F. (1982). Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5(1), 37-82. https://doi.org/10.1007/BF01450244
  21. Jackson, M.J.; Banerjee, S.K.; Marvin, J.A.; Lu, R.; Gruber, W. (1991). Detrital remanence, inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophysical Journal International, 104(1), 95-103. https://doi.org/10.1111/j.1365-246X.1991.tb02496.x
  22. Jelinek, V. (1978). Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22(1), 50-62. https://doi.org/10.1007/BF01613632
  23. Jelinek, V. (1981). Characterization to the magnetic fabric of rocks. Tectonophysics, 79(3-4), T63-T67. https://doi.org/10.1016/0040-1951(81)90110-4
  24. Jiménez, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A. (2014). Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and nonrotational reactivation of a Mesozoic intracontinental rift. Tectonics, 33(11), 2233-2260. https://doi.org/10.1002/2014TC003532
  25. Jiménez, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A. (2015). Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a ≤3 mm/yr slip rate for the Bucaramanga-Santa Marta Fault, Colombia. Journal of South American Earth Sciences, 57, 12-22, https://doi.org/10.1016/j.jsames.2014.11.001
  26. Jiménez, G.; García-Delgado, H.; Geissman, J.W. (2021). Magnetostratigraphy and magnetic properties of the Jurassic to Lower Cretaceous Girón Group (northern Andes, Colombia). Geosphere, 17(6), 2172-2196. https://doi.org/10.1130/GES02186.1
  27. Jiménez, G.; Geissman, J.W.; Bayona, G. (2022). Unraveling tectonic inversion and wrench deformation in the Eastern Cordillera (Northern Andes) with paleomagnetic and AMS data. Tectonophysics, 834, 229356. https://doi.org/10.1016/j.tecto.2022.229356
  28. Jiménez, G.; García, C.A. (2023). Mineralogía magnética en rocas del Jurásico de la Cordillera Oriental de Colombia. Boletín de Geología, 45(2), 35-49. https://doi.org/10.18273/revbol.v45n2-2023002
  29. King, R.F. (1955). The remanent magnetism of artificially deposited sediments. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 7(3), 115-134. https://doi.org/10.1111/j.1365-246X.1955.tb06558.x
  30. Kodama, K.P. (1997). A successful rock magnetic technique for correcting paleomagnetic inclination shallowing: Case study of the Nacimiento Formation, New Mexico. Journal of Geophysical Research: Solid Earth, 102(B3), 5193-5206. https://doi.org/10.1029/96JB03833
  31. Kodama, K.P. (2009). Simplification of the anisotropy-based inclination correction technique for magnetite- and haematite-bearing rocks: a case study for the Carboniferous Glenshaw and Mauch Chunk Formations, North America. Geophysical Journal International, 176(2), 467-477. https://doi.org/10.1111/j.1365-246X.2008.04013.x
  32. Kodama, K.P. (2012). Paleomagnetism of Sedimentary Rocks: Process and Interpretation. Wiley-Blackwell.
  33. Li, Y.X.; Kodama, K.P. (2016). Detecting and Correcting for Paleomagnetic Inclination Shallowing of Sedimentary Rocks: A Review. Frontiers in Earth Science, 4, 1-6. https://doi.org/10.3389/feart.2016.00007
  34. Martín-Hernández, F.; Hirt, A.M. (2003). The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics, 367(1-2), 13-28. https://doi.org/10.1016/S0040-1951(03)00127-6
  35. Maze, W.B.; Hargraves, R.B. (1984). Paleomagnetic results from the Jurassic La Quinta Formation in the Perijá Range, Venezuela, and their tectonic significance. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.). The Caribbean–South American Plate Boundary and Regional Tectonics (pp. 287-294). Geological Society of America, Memoir 162. https://doi.org/10.1130/MEM162-p287
  36. Nova, G.; Montaño, P.; Bayona, G.; Rapalini, A.; Montes, C. (2012). Paleomagnetismo en rocas del Jurásico y Cretácico Inferior en el flanco occidental de la Serranía del Perijá; Contribuciones a la evolución tectónica del NW de Suramérica. Boletín de Geología, 34(2), 117-138.
  37. Parés, J.M.; van der Pluijm, B. (2002). Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 350(4), 283-298. https://doi.org/10.1016/S0040-1951(02)00119-1
  38. Rochette, P. (1987). Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 9(8), 1015-1020. https://doi.org/10.1016/0191-8141(87)90009-5
  39. Rochette, P.; Jackson, M.; Aubourg, C. (1992). Rock magnetism and interpreting of anisotropy of magnetic susceptibility. Reviews of Geophysics, 30(3), 209-226. https://doi.org/10.1029/92RG00733
  40. Tan, X.; Kodama, K. P. (2002). Magnetic anisotropy and paleomagnetic inclination shallowing in red beds: evidence from the Mississippian Mauch Chunk Formation, Pennsylvania. Journal of Geophysical Research: Solid Earth, 107(B11), 1-17. https://doi.org/10.1029/2001JB001636
  41. Tarling, D.H.; Hrouda, F. (1993). The magnetic anisotropy of rocks. Chapman & Hall.
  42. Tauxe, L.; Kodama, K.P.; Kent, D.V. (2008). Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach. Physics of the Earth and Planetary Interiors, 169(1-4), 152-165. https://doi.org/10.1016/j.pepi.2008.05.006