Publicado 2024-03-08
Palabras clave
- Aprendizaje profundo,
- Exploración geofísica,
- Modelamiento,
- Diseño de adquisición
Cómo citar
Derechos de autor 2024 Boletín de Geología
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Altmetrics
Resumen
En la exploración geofísica, el análisis del terreno es fundamental para planificar la adquisición de datos de gravimetría y magnetometría. No obstante, en la actualidad dichos análisis requieren el uso supervisado de información secundaria extensa. Por este motivo, en este estudio se propone una metodología que utiliza el aprendizaje profundo para evaluar el impacto de la cobertura vegetal y la topografía en la adquisición geofísica. Se usó una red neuronal artificial perceptrón multicapa para considerar cinco variables terrestres, y una red neural convolucional para la clasificación automatizada de coberturas vegetales sobre imágenes satelitales. A partir de esto, se obtuvieron puntos para la localización de estaciones de levantamiento geofísico que cumplen con un criterio de favorabilidad por accesibilidad, distancias, restricciones por cuerpos de agua y coberturas boscosas. La geometría obtenida se evaluó en la exploración del Granito de Durania en Colombia, y los resultados se analizaron utilizando transectas de adquisición y modelado computacional de anomalías magnéticas y de gravedad. Finalmente, se aplicaron técnicas de interpolación donde el método Ponderación de Distancia Inversa (IDW) mostró la mejor imagen para interpretar la delimitación del cuerpo intrusivo.
Descargas
Referencias
- Alarcón, C.M.; Clavijo-Torres, J.; Mantilla-Figueroa, L.C.; Rodríguez, J.G. (2020). Nueva propuesta de edades para el registro sedimentario de las formaciones Bocas y Jordán y su relación con el desarrollo de la actividad magmática del Grupo Plutónico de Santander (Cordillera Oriental, Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(173), 1137-1151. https://doi.org/10.18257/raccefyn.1208
- ASF DAAC, (2015). ALOS PALSAR_Radiometric_ Terrain_Corrected_low_res. Includes Material © JAXA/METI 2007. https://doi.org/10.5067/JBYK3J6HFSVF
- Ball, J.G.; Petrova, K.; Coomes, D.A.; Flaxman, S. (2022). Using deep convolutional neural networks to forecast spatial patterns of Amazonian deforestation. Methods in Ecology and Evolution, 13(11), 2622-2634. https://doi.org/10.1111/2041-210X.13953
- Botello-Becerra, F.M. (2014). Aportes al conocimiento geológico del Granito de Durania (Silúrico temprano): Macizo de Santander (Colombia). Tesis, Universidad Industrial de Santander, Bucaramanga, Colombia.
- Borges, P.d.A.; Franke, J.; da Anunciação, Y.M.T.; Weiss, H.; Bernhofer, C. (2016). Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theoretical and Applied Climatology, 123, 335-348. https://doi.org/10.1007/s00704-014-1359-9
- Cockett, R.; Kang, S.; Heagy, L.J.; Pidlisecky, A.; Oldenburg, D.W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85(Part A), 142-154. https://doi.org/10.1016/j.cageo.2015.09.015
- Copernicus Sentinel data (2021). Imágenes recuperadas de USGS EROS Archive – Sentinel-2. https://doi.org/10.5066/F76W992G
- Developers, TF. (2022). TensorFlow: Convolution Neural Network (CNN) tutorial. Zenodo. https://doi.org/10.5281/zenodo.4724125
- Fúquen, J.; Ceballos, L.; Pedraza, A.; Marín, E. (2010). Geología de la Plancha 98 Durania [Plancha geológica]. 1:100.000. Bogotá: Ministerio de minas y energía: INGEOMINAS.
- Gardner, D.; Nichols, D. (2017). Multi-label classification of satellite images with Deep Learning. Stanford University.
- Goyes-Peñafiel, P.; Hernandez-Rojas, A. (2021a). Doble evaluación de la susceptibilidad por movimientos en masa basada en redes neuronales artificiales y pesos de evidencia. Boletín de Geología, 43(1), 173-191. https://doi.org/10.18273/revbol.v43n1-2021009
- Goyes-Peñafiel, P.; Hernandez-Rojas, A. (2021b). Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia. Engineering Geology, 280, 105958. https://doi.org/10.1016/j.enggeo.2020.105958
- Goyes-Peñafiel, P.; Vargas, E.; Correa, C.V.; Sun, Y.; Kamilov, U.S.; Wohlberg, B.; Arguello, H. (2023). Coordinate-based seismic interpolation in irregular land survey: a deep internal learning approach. IEEE Transactions on Geoscience and Remote Sensing, 61. https://doi.org/10.1109/TGRS.2023.3290468
- Guo, T.; Dong, J.; Li, H.; Gao, Y. (2017). Simple convolutional neural network on image classification. IEEE 2nd International Conference on Big Data Analysis, Beijing, China. https://doi.org/10.1109/ICBDA.2017.8078730
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. (2018). Introducing EUROSAT: A novel dataset and deep learning benchmark for land use and land cover classification. International Geoscience and Remote Sensing Symposium, Valencia, España. https://doi.org/10.1109/IGARSS.2018.8519248
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. (2019). EUROSAT: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2217-2226. https://doi.org/10.1109/JSTARS.2019.2918242
- Hernández, O.; Khurama, S.; Alexander, G.C. (2011). Structural modeling of the Vichada impact structure from interpreted ground gravity and magnetic anomalies. Boletín de Geología, 33(1), 15-26.
- Hernandez-Rojas, A.; Arguello, H. (2022). 3D Geometry Design via End-To-End Optimization for Land Seismic Acquisition. 2022 IEEE International Conference on Image Processing, Bordeaux, Francia. https://doi.org/10.1109/ICIP46576.2022.9897295
- Instituto Geográfico Agustín Codazzi. (2018). Cartografía Básica Digital Integrada [Bases vectoriales]. 1:25.000. Bogotá: Instituto Geográfico Agustín Codazzi.
- Kearey, P.; Brooks, M.; Hill, I. (2002). An introduction to geophysical exploration. Vol. 4. John Wiley & Sons.
- Kingma, D.P.; Ba, J.L. (2015). Adam: A method for stochastic optimization. ArXiv prepint ArXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
- Li, J.; Heap, A. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, 53, 173-189. https://doi.org/10.1016/j.envsoft.2013.12.008
- Lowrie, W. (2007). Fundamentals of Geophysics. 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511807107
- Mantilla, L.C.; Valencia, V.A.; Barra, F.; Pinto, J.; Colegial, J. (2009). Geocronología U-Pb de los cuerpos porfiríticos del distrito aurífero de Vetas, California (Dpto de Santander, Colombia). Boletín de Geología, 31(1), 31-43.
- Mantilla, L.C.; Mendoza, H.; Bissig, T.; Craig, H. (2011). Nuevas evidencias sobre el magmatismo Miocénico en el distrito minero de Vetas- California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología, 33(1), 43-58.
- NCEI Geomagnetic Modelling Team. (2009). Magnetic Field Calculators. NOOA National Centers for Environmental Information. https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. (2019). Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma, 342, 85-92. https://doi.org/10.1016/j.geoderma.2019.02.019
- Prathap, G.; Afanasyev, I; (2018). Deep learning approach for building detection in satellite multispectral imagery. IEEE International Conference on Intelligent Systems. Funchal, Portugal. https://doi.org/10.1109/IS.2018.8710471
- Pritt, M.; Chern, G. (2017). Satellite image classification with deep learning. IEEE Applied Imagery Pattern Recognition Workshop. Washington, USA. https://doi.org/10.1109/AIPR.2017.8457969
- Rojas-Barbosa, S. (2013). Metalogenia de las mineralizaciones auríferas en la zona de Vetas, Santander. Tesis. Universidad Nacional de Colombia, Bogotá, Colombia.
- Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.; Nikolić, M.; Bajat, B. (2020). Random forest spatial interpolation. Remote Sensing, 12(10), 1687. https://doi.org/10.3390/rs12101687
- Simonyan, K.; Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, San Diego, USA. arXiv. https://doi.org/10.48550/arXiv.1409.1556
- Sultana, F.; Sufian, A.; Dutta, P. (2018). Advancements in image classification using convolutional neural network. 4th International Conference on Research in Computational Intelligence and Communication Networks, Kolkata, India. https://doi.org/10.1109/ICRCICN.2018.8718718
- Torres, J.A.; Goyes-Peñafiel, Y. (2013). Seismic Processing a Synthetic Structural Section Perijanero Flank Central, Central Basin of Venezuela. 1st Latin American Geosciences Student Conference, Medellín, Colombia. https://doi.org/10.3997/2214-4609.201318003
- Ward, D.E.; Goldsmith, R.; Cruz, J.; Restrepo, H. (1973). Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, departamento de Santander. Boletín Geológico, 21(1-3), 1-134. https://doi.org/10.32685/0120-1425/bolgeol21.1-3.1973.383
- Zeiler, M.D.; Fergus, R. (2014). Visualizing and understanding convolutional networks. Computer vision – ECCV 2014. (pp. 818-833). Springer, Cham, Zurich, Suiza. https://doi.org/10.1007/978-3-319-10590-1_53