Vol. 46 Núm. 1 (2024): Boletín de Geología
Artículos científicos

Diseño de geometría para levantamientos de gravimetría y magnetometría con aprendizaje profundo

Sebastián Martínez-Acevedo
Universidad Industrial de Santander
Sait Khurama
Universidad Industrial de Santander
Luis Carlos Mantilla-Figueroa
Universidad Industrial de Santander
Paul Goyes-Peñafiel
Universidad Industrial de Santander

Publicado 2024-03-08

Palabras clave

  • Aprendizaje profundo,
  • Exploración geofísica,
  • Modelamiento,
  • Diseño de adquisición

Cómo citar

Martínez-Acevedo, S., Khurama, S., Mantilla-Figueroa, L. C., & Goyes-Peñafiel, P. (2024). Diseño de geometría para levantamientos de gravimetría y magnetometría con aprendizaje profundo. Boletín De Geología, 46(1), 59–72. https://doi.org/10.18273/revbol.v46n1-2024004

Altmetrics

Resumen

En la exploración geofísica, el análisis del terreno es fundamental para planificar la adquisición de datos de gravimetría y magnetometría. No obstante, en la actualidad dichos análisis requieren el uso supervisado de información secundaria extensa. Por este motivo, en este estudio se propone una metodología que utiliza el aprendizaje profundo para evaluar el impacto de la cobertura vegetal y la topografía en la adquisición geofísica. Se usó una red neuronal artificial perceptrón multicapa para considerar cinco variables terrestres, y una red neural convolucional para la clasificación automatizada de coberturas vegetales sobre imágenes satelitales. A partir de esto, se obtuvieron puntos para la localización de estaciones de levantamiento geofísico que cumplen con un criterio de favorabilidad por accesibilidad, distancias, restricciones por cuerpos de agua y coberturas boscosas. La geometría obtenida se evaluó en la exploración del Granito de Durania en Colombia, y los resultados se analizaron utilizando transectas de adquisición y modelado computacional de anomalías magnéticas y de gravedad. Finalmente, se aplicaron técnicas de interpolación donde el método Ponderación de Distancia Inversa (IDW) mostró la mejor imagen para interpretar la delimitación del cuerpo intrusivo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Alarcón, C.M.; Clavijo-Torres, J.; Mantilla-Figueroa, L.C.; Rodríguez, J.G. (2020). Nueva propuesta de edades para el registro sedimentario de las formaciones Bocas y Jordán y su relación con el desarrollo de la actividad magmática del Grupo Plutónico de Santander (Cordillera Oriental, Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(173), 1137-1151. https://doi.org/10.18257/raccefyn.1208
  2. ASF DAAC, (2015). ALOS PALSAR_Radiometric_ Terrain_Corrected_low_res. Includes Material © JAXA/METI 2007. https://doi.org/10.5067/JBYK3J6HFSVF
  3. Ball, J.G.; Petrova, K.; Coomes, D.A.; Flaxman, S. (2022). Using deep convolutional neural networks to forecast spatial patterns of Amazonian deforestation. Methods in Ecology and Evolution, 13(11), 2622-2634. https://doi.org/10.1111/2041-210X.13953
  4. Botello-Becerra, F.M. (2014). Aportes al conocimiento geológico del Granito de Durania (Silúrico temprano): Macizo de Santander (Colombia). Tesis, Universidad Industrial de Santander, Bucaramanga, Colombia.
  5. Borges, P.d.A.; Franke, J.; da Anunciação, Y.M.T.; Weiss, H.; Bernhofer, C. (2016). Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theoretical and Applied Climatology, 123, 335-348. https://doi.org/10.1007/s00704-014-1359-9
  6. Cockett, R.; Kang, S.; Heagy, L.J.; Pidlisecky, A.; Oldenburg, D.W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85(Part A), 142-154. https://doi.org/10.1016/j.cageo.2015.09.015
  7. Copernicus Sentinel data (2021). Imágenes recuperadas de USGS EROS Archive – Sentinel-2. https://doi.org/10.5066/F76W992G
  8. Developers, TF. (2022). TensorFlow: Convolution Neural Network (CNN) tutorial. Zenodo. https://doi.org/10.5281/zenodo.4724125
  9. Fúquen, J.; Ceballos, L.; Pedraza, A.; Marín, E. (2010). Geología de la Plancha 98 Durania [Plancha geológica]. 1:100.000. Bogotá: Ministerio de minas y energía: INGEOMINAS.
  10. Gardner, D.; Nichols, D. (2017). Multi-label classification of satellite images with Deep Learning. Stanford University.
  11. Goyes-Peñafiel, P.; Hernandez-Rojas, A. (2021a). Doble evaluación de la susceptibilidad por movimientos en masa basada en redes neuronales artificiales y pesos de evidencia. Boletín de Geología, 43(1), 173-191. https://doi.org/10.18273/revbol.v43n1-2021009
  12. Goyes-Peñafiel, P.; Hernandez-Rojas, A. (2021b). Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia. Engineering Geology, 280, 105958. https://doi.org/10.1016/j.enggeo.2020.105958
  13. Goyes-Peñafiel, P.; Vargas, E.; Correa, C.V.; Sun, Y.; Kamilov, U.S.; Wohlberg, B.; Arguello, H. (2023). Coordinate-based seismic interpolation in irregular land survey: a deep internal learning approach. IEEE Transactions on Geoscience and Remote Sensing, 61. https://doi.org/10.1109/TGRS.2023.3290468
  14. Guo, T.; Dong, J.; Li, H.; Gao, Y. (2017). Simple convolutional neural network on image classification. IEEE 2nd International Conference on Big Data Analysis, Beijing, China. https://doi.org/10.1109/ICBDA.2017.8078730
  15. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. (2018). Introducing EUROSAT: A novel dataset and deep learning benchmark for land use and land cover classification. International Geoscience and Remote Sensing Symposium, Valencia, España. https://doi.org/10.1109/IGARSS.2018.8519248
  16. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. (2019). EUROSAT: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2217-2226. https://doi.org/10.1109/JSTARS.2019.2918242
  17. Hernández, O.; Khurama, S.; Alexander, G.C. (2011). Structural modeling of the Vichada impact structure from interpreted ground gravity and magnetic anomalies. Boletín de Geología, 33(1), 15-26.
  18. Hernandez-Rojas, A.; Arguello, H. (2022). 3D Geometry Design via End-To-End Optimization for Land Seismic Acquisition. 2022 IEEE International Conference on Image Processing, Bordeaux, Francia. https://doi.org/10.1109/ICIP46576.2022.9897295
  19. Instituto Geográfico Agustín Codazzi. (2018). Cartografía Básica Digital Integrada [Bases vectoriales]. 1:25.000. Bogotá: Instituto Geográfico Agustín Codazzi.
  20. Kearey, P.; Brooks, M.; Hill, I. (2002). An introduction to geophysical exploration. Vol. 4. John Wiley & Sons.
  21. Kingma, D.P.; Ba, J.L. (2015). Adam: A method for stochastic optimization. ArXiv prepint ArXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
  23. Li, J.; Heap, A. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, 53, 173-189. https://doi.org/10.1016/j.envsoft.2013.12.008
  24. Lowrie, W. (2007). Fundamentals of Geophysics. 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511807107
  25. Mantilla, L.C.; Valencia, V.A.; Barra, F.; Pinto, J.; Colegial, J. (2009). Geocronología U-Pb de los cuerpos porfiríticos del distrito aurífero de Vetas, California (Dpto de Santander, Colombia). Boletín de Geología, 31(1), 31-43.
  26. Mantilla, L.C.; Mendoza, H.; Bissig, T.; Craig, H. (2011). Nuevas evidencias sobre el magmatismo Miocénico en el distrito minero de Vetas- California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología, 33(1), 43-58.
  27. NCEI Geomagnetic Modelling Team. (2009). Magnetic Field Calculators. NOOA National Centers for Environmental Information. https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml
  28. Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. (2019). Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma, 342, 85-92. https://doi.org/10.1016/j.geoderma.2019.02.019
  29. Prathap, G.; Afanasyev, I; (2018). Deep learning approach for building detection in satellite multispectral imagery. IEEE International Conference on Intelligent Systems. Funchal, Portugal. https://doi.org/10.1109/IS.2018.8710471
  30. Pritt, M.; Chern, G. (2017). Satellite image classification with deep learning. IEEE Applied Imagery Pattern Recognition Workshop. Washington, USA. https://doi.org/10.1109/AIPR.2017.8457969
  31. Rojas-Barbosa, S. (2013). Metalogenia de las mineralizaciones auríferas en la zona de Vetas, Santander. Tesis. Universidad Nacional de Colombia, Bogotá, Colombia.
  32. Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.; Nikolić, M.; Bajat, B. (2020). Random forest spatial interpolation. Remote Sensing, 12(10), 1687. https://doi.org/10.3390/rs12101687
  33. Simonyan, K.; Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, San Diego, USA. arXiv. https://doi.org/10.48550/arXiv.1409.1556
  34. Sultana, F.; Sufian, A.; Dutta, P. (2018). Advancements in image classification using convolutional neural network. 4th International Conference on Research in Computational Intelligence and Communication Networks, Kolkata, India. https://doi.org/10.1109/ICRCICN.2018.8718718
  35. Torres, J.A.; Goyes-Peñafiel, Y. (2013). Seismic Processing a Synthetic Structural Section Perijanero Flank Central, Central Basin of Venezuela. 1st Latin American Geosciences Student Conference, Medellín, Colombia. https://doi.org/10.3997/2214-4609.201318003
  36. Ward, D.E.; Goldsmith, R.; Cruz, J.; Restrepo, H. (1973). Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona, departamento de Santander. Boletín Geológico, 21(1-3), 1-134. https://doi.org/10.32685/0120-1425/bolgeol21.1-3.1973.383
  37. Zeiler, M.D.; Fergus, R. (2014). Visualizing and understanding convolutional networks. Computer vision – ECCV 2014. (pp. 818-833). Springer, Cham, Zurich, Suiza. https://doi.org/10.1007/978-3-319-10590-1_53