Vol. 39 Núm. 1 (2017): Boletín de Geología
Artículos

PETROLOGÍA, GEOQUÍMICA Y GEOCRONOLOGÍA DE LAS METABASITAS DEL COMPLEJO ARQUÍA EN EL SECTOR PIJAO-GÉNOVA, CORDILLERA CENTRAL, ANDES COLOMBIANOS

Carlos Alberto García-Ramírez
Universidad Industrial de Santander, UIS, Bucaramanga, Colombia
Carlos Alberto Ríos-Reyes
Escuela de Geología, Universidad Industrial de Santander, Bucaramanga, Colombia.
Oscar Mauricio Castellanos-Alarcón
Programa de Geología, Universidad de Pamplona, Pamplona, Colombia.
Luis Carlos Mantilla-Figueroa
Escuela de Geología, Universidad Industrial de Santander, Bucaramanga, Colombia.

Publicado 2017-03-01

Palabras clave

  • Petrología,
  • metabasitas,
  • Complejo Arquía,
  • Cordillera Central,
  • Colombia

Cómo citar

García-Ramírez, C. A., Ríos-Reyes, C. A., Castellanos-Alarcón, O. M., & Mantilla-Figueroa, L. C. (2017). PETROLOGÍA, GEOQUÍMICA Y GEOCRONOLOGÍA DE LAS METABASITAS DEL COMPLEJO ARQUÍA EN EL SECTOR PIJAO-GÉNOVA, CORDILLERA CENTRAL, ANDES COLOMBIANOS. Boletín De Geología, 39(1), 105–126. https://doi.org/10.18273/revbol.v39n1-2017005

Altmetrics

Resumen

Las metabasitas del Complejo Arquía en la franja Pijao-Génova, borde occidental de la Cordillera Central de los Andes Colombianos, consisten en esquistos cloríticos, esquistos actinolíticos con y sin granate, anfibolitas, anfibolitas granatíferas, eclogitas y metabasaltos. Algunos cuerpos de peridotitas serpentinizadas afloran a lo largo de fallas del sistema Cauca- Almaguer y Silvia-Pijao, así como sus fallas satélites. Las metabasitas fueron afectadas por un metamorfismo regional, alcanzando su pico metamórfico en facies anfibolita. Los elementos de tierras raras (ETRs) (normalizados al condrito C1) de las rocas estudiadas muestran un empobrecimiento en ETRs Ligeros y patrones planos a poco fraccionados de ETRs Pesados. Los patrones de ETRs de las metabasitas, junto con su relación La/Sm < 0.6 y anomalías positivas en Nb, Ta y Ti, pueden sugerir que sus protolitos son de tipo MORB. La asociación litológica entre metabasitas, escasas metapelitas y rocas ultramáficas deformadas proponen que las rocas del Complejo Arquía podrían constituir remanentes de una secuencia ofiolítica de series tipo N-MORB. La geocronología Lu-Hf en roca total-granate de las metabasitas produjo una edad de 128.7±3.5 Ma. Esta edad se ha interpretado como la edad en que estas rocas alcanzaron la facies eclogita, que a su vez coincide con el proceso de roll-back de la litosfera oceánica subducida y la formación del arco magmático de Quebradagrande.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. AcmeLabs 2015. Price Brochure. Consultado el 13 de marzo de 2016. http://acmelab.com/pdfs/Acme_Price_ Brochure.pdf.
  2. Bouvier, A., Vervoort, J.D., and Patchett, P.J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibriated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48-57.
  3. Brooks, C., Hart, S.R., and Wendt, I. 1972. Realistic use of two-error regression treatments as applied to rubidium–strontium data. Reviews of Geophysics, 10(2): 551-577.
  4. Bustamante, A., Juliani, C., Hall, C.M., and Essene, E.J. 2011. 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: implications on the styles of accretion in the Northern Andes. Geologica Acta, 9(3-4): 351-362.
  5. Carmichael, R.S. 1989. CRC practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, FL. 741p.
  6. Cheng, H., King, R.L., Nakamura, E., Vervoort, J.D., and Zhou, Z. 2008. Coupled Lu–Hf and Sm–Nd geochronology constrains garnet growth in ultra-highpressure eclogites from the Dabie orogen. Journal of Metamorphic Geology, 26(7): 741-758.
  7. Cheng, H., Zhang, C., Vervoort, J.D., Li, X., Li, Q., Wu, Y., and Zheng, S. 2012. Timing of eclogite facies metamorphism in the North Qinling by U–Pb and Lu– Hf geochronology. Lithos, 136-139: 46-59.
  8. Cheng, H., Liu, Y., Vervoort, J.D., and Lu, H. 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane, Tibet. Gondwana Research, 28(4): 1482-1499.
  9. Cediel, F., Shaw, R.P., and Cáceres, C. 2003. Tectonic assembly of the Northern Andean Block. In: Bartolini, C., Buffler, R.T., and Blickwede, J. (eds.). The CircumGulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir, 79: 815-848.
  10. Cloos, M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin, 105(6): 715737.
  11. Irvine, T.N., and Baragar, W.R.A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548.
  12. Janoušek, V., Farrow, C.M., and Erban, V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6): 12551259.
  13. Kerr, A., Marriner, G., Tarney, J., Nivia, A., Saunders, A., Thirlwall, M., and Sinton, C. 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6): 667-702.
  14. Ludwig, K.R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
  15. Maya, M., y González, H. 1995. Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, INGEOMINAS, 35: 43-57.
  16. McCourt, W., Aspden, J., and Brook, M. 1984. New geological and geochronological data from the Colombia Andes: continental growth by multiple accretion. Journal of the Geological Society, London, 141: 831-845.
  17. McCourt, W., Mosquera, D., Nivia, A., y Núñez, A. 1985. Reseña explicativa del mapa geológico preliminar plancha 243 Armenia, escala 1:100.000. Instituto Colombiano de Geología y Minería, 16p.
  18. Moreno-Sanchez, M., and Pardo-Trujillo, A. 2003. Stratigraphical and sedimentological constraints on western Colombia: Implications on the evolution of the Caribbean plate. In: Bartolini, C., Buffler, R.T., and Blickwede, J. (Eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir Vol. 79: 891-924.
  19. Münker, C., Weyer, S., Scherer, E., and Mezger, K. 2001. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochemistry, Geophysics, Geosystems, 2(12):1-19.
  20. Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochemical and Cosmochemical Acta, 39: 757-773.
  21. Nesheim, T.O., Vervoort, J.D., McClelland, W.C., Gilotti, J.A., and Lang, H.M. 2012. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia. Lithos, 134-135: 91-107.
  22. Patchett, P.J., and Tatsumoto, M. 1981. A routine highprecision method for Lu-Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology, 75(3): 263-267.
  23. Pearce, J.A., and Cann, J.R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planetary Science Letters, 19(2): 290300.
  24. Pearce, J.A. 1996. A user’s guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, Vol. 12. pp. 79-113.
  25. Peters, T.J., Ayers, J.C., Gao, S., and Liu, X.M. 2013. The origin and response of zircon in eclogite to metamorphism during the multi-stage evolution of the Huwan Shear Zone, China: Insights from Lu–Hf and U– Pb isotopic and trace element geochemistry. Gondwana Research, 23(2): 726-747.
  26. Pindell, J., and Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society of London, Special Publications, 328: 1-55.
  27. Rodríguez, G., y Arango, M. 2013. Reinterpretación geoquímica y radiométrica de las metabasitas del Complejo Arquía. Boletín de Geología, 35(2): 65-81.
  28. Ruiz, E., Blanco, I., Toro, L., Moreno, M., Vinasco, C., García, A., Morata, D., and Gómez, A. 2012. Geoquímica y petrología de las metabasitas del Complejo Arquía (Municipio de Santafé de Antioquia y Río Arquía, Colombia): Implicaciones geodinámicas. Boletín Ciencias de la Tierra, 32: 65-80.
  29. Ruiz, E. 2013. Geoquímica y trayectorias PT de las rocas metamórficas del Complejo Arquía, entre los municipios de Santafé de Antioquia (Antioquia) y el río Arquía (Caldas). Tesis de Maestría, Universidad de Caldas, Manizales, 109p.
  30. Scherer, E.E., Münker, C., and Mezger, K. 2001. Calibration of the Lutetium-Hafnium clock. Science, 293: 683-686.
  31. Smit, M.A., Scherer, E.E., and Mezger, K. 2013. Lu– Hf and Sm–Nd garnet geochronology: Chronometric closure and implications for dating petrological processes. Earth and Planetary Science Letters, 381: 222-233.
  32. Söderlund, U., Patchett, P., Vervoort, J.D., and Isachsen, C.E. 2004. The 176Lu decay constant determined by LuHf and U-Pb isotope systematic of Precambrian mafic intrusions. Earth and Planetary Science Letter, 219(34): 311-324.
  33. Spikings, R., Cochrane, R., Villagómez, D., Lelij, R., Vallejo, C., Winkler, W., and Beate, B. 2015. The geological history of northwestern South America: from Pangea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). Gondwana Research, 27(1): 95-139.
  34. Sun, S.S., and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., eds. Geological Society of London, Special Publications, 42: 313-345.
  35. Toussaint, J.F., y Restrepo, J.J. 1978. Edad cretácea de una anfibolita granatífera de Pijao, Quindío. Publicación Especial de Geología, Universidad Nacional de Colombia, 17: 1-2.
  36. Vervoort, J.D., and Patchett, P.J. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3723.
  37. Vervoort, J.D., Patchett, P.J., Söderlund, U., and Baker, M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry, Geophysics, Geosystems. 5(11):1-15
  38. Villagómez, D. 2010. Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Thèse de doctorat, Faculté Des Sciences, Département de Minéralogie, Genève, Université de Genève, Switzerland, 126p.
  39. Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3-4): 875896.
  40. Villagómez, D., and Spikings, R. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous– Tertiary evolution of the Northern Andes. Lithos, 160161: 228-249.
  41. Whitney, D.L., and Evans, B.W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  42. Zirakparvar, N.A., Baldwin, S.L., and Vervoort, J.D. 2011. Lu–Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift. Earth and Planetary Science Letters, 309(1-2): 56-66.