Vol. 45 Núm. 3 (2023): Boletín de Geología
Artículos científicos

Consideraciones generales sobre la génesis de la ocurrencia de uranio y vanadio en las rocas sedimentarias Cretácicas del Sinclinal de Berlín Cordillera Central (Andes Colombianos)

Andrés Cáceres-Bottia
Universidad Industrial de Santander
Luis Carlos Mantilla-Figueroa
Universidad Industrial de Santander
Carlos Alberto Ríos-Reyes
Universidad Industrial de Santander
Robinson Pimiento-Rueda
Universidad Industrial de Santander

Publicado 2023-10-26

Palabras clave

  • Uranio,
  • Vanadio,
  • Epigenético,
  • Transición energética

Cómo citar

Cáceres-Bottia, A., Mantilla-Figueroa, L. C., Ríos-Reyes, C. A., & Pimiento-Rueda, R. (2023). Consideraciones generales sobre la génesis de la ocurrencia de uranio y vanadio en las rocas sedimentarias Cretácicas del Sinclinal de Berlín Cordillera Central (Andes Colombianos). Boletín De Geología, 45(3), 79–93. https://doi.org/10.18273/revbol.v45n3-2023005

Altmetrics

Resumen

La mineralización en el proyecto Berlín en Colombia es de interés por varias razones, entre estas sus concentraciones relativamente altas de uranio (0,11% U3O8) y vanadio (0,45% V2O5), además de la aparición de otros elementos que pueden ser económicamente interesantes y necesarios para lograr la transición energética, tales como Y, Re, Ag y P. En el presente estudio se propone una hipótesis para el origen de la mineralización de uranio y vanadio: un origen epigenético. Los resultados indican que la fuente del uranio, el vanadio y los otros elementos económicos asociados proviene principalmente de las lutitas carbonosas de la formación Abejorral que sobreyacen una sucesión de wackestones del Cretácico. Los elementos de interés fueron transportados mediante fluidos diagenéticos bajo condiciones físicas y geoquímicas específicas. La trampa de la mineralización ocurre de manera estratoligada debido a un frente de reducción durante la interacción con materia orgánica y H2S, la cual es detonada y atrapada por la sucesión de carbonatos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Alexandre, P.; Kyser, K. (2005). Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. The Canadian Mineralogist, 43(3), 1005-1017. https://doi.org/10.2113/gscanmin.43.3.1005
  2. Barrero, D.; Vesga, C. (1976). Geología de la Plancha 188 - La Dorada, Esc 1:100000. Instituto Colombiano de Geología y Minería (INGEOMINAS).
  3. Bowles, J. (1990). Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chemical Geology, 83(1-2), 47-53. https://doi.org/10.1016/0009-2541(90)90139-X
  4. Bürgl, H. (1966). The orogenesis in the Andean system of Colombia. Tectonophysics, 4(4-6), 429-443. https://doi.org/10.1016/0040-1951(67)90009-1
  5. Cáceres, A. (2012). Genesis of the sediment-hosted uraniferous phosphate deposit in the Berlin Project, Central Cordillera, Colombia, and its implications for exploration. MSc Thesis. Queen´s University, Canada.
  6. Cai, Z.L.; Zhang, Y.M.; Liu, T.; Huang, J. (2015). Vanadium extraction from refractory stone coal using novel composite additive. Jom, 67(11), 2629-2634. https://doi.org/10.1007/s11837-015-1611-5
  7. Cediel, F. (2019). Phanerozoic Orogens of Northwestern South America: Cordilleran-Type Orogens. Taphrogenic Tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá Indenter. In: F. Cediel, R.P. Shaw (eds.). Geology and Tectonics of Northwestern South America (pp. 3-95). Frontiers in Earth Sciences. Springer. https://doi.org/10.1007/978-3-319-76132-9_1
  8. Cediel, F.; Shaw, R.P.; Cáceres, C. (2003). Tectonic assembly of the Northern Andean block. In: C. Bartolini, R.T. Buffler, J. Blickwedw (eds.). The Circum-Gulf of Mexico and Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (pp. 815-848). American Association of Petroleum Geologists. https://doi.org/10.1306/M79877C37
  9. Chipley, D.; Polito, P.A.; Kyser, T.K. (2007). Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. American Mineralogist, 92(11-12), 1925-1935. https://doi.org/10.2138/am.2007.2226
  10. de Klerk, L.; Niemann, P.; Miller, P.; Véliz, P.; Corley, D. (2013). Preliminary economic assessment on the Berlin deposit-Colombia. Australia, Tenova Mining & Minerals (Australia) Pty Ltd.
  11. Des Marais, D.J.; Moore, J.G. (1984). Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planetary Sciences Letter, 69(1), 43-57. https://doi.org/10.1016/0012-821X(84)90073-6
  12. Edelman-Furstenberg, Y. (2009). Cyclic upwelling facies along the Late Cretaceous southern Tethys (Israel): taphonomic and ichnofacies evidence of a high-productivity mosaic. Cretaceous Research, 30(4), 847-863. https://doi.org/10.1016/j.cretres.2009.01.005
  13. Feininger, T. (1970). The Palestina Fault, Colombia. United States Department of the Interior Geological Survey.
  14. Galindo, C.; Mougin, L.; Fakhi, S.; Nourreddine, A.; Lamghari, A.; Hannache, H. (2007). Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco). Journal of Environmental Radioactivity, 92(1), 41-54. https://doi.org/10.1016/j.jenvrad.2006.09.005
  15. Garzón, T. (1984). Síntesis de los trabajos geológicos - mineros realizados en el prospecto Urano- Fosfático de Berlín-Caldas. Instituto de Asuntos Nucleares (IAN).
  16. González, H. (2001). Memoria explicativa. Mapa Geológico del Departamento de Antioquia. Geología, recursos minerales y amenazas potenciales, INGEOMINAS.
  17. IAEA (1983). Prospección de Uranio, Colombia. Conclusiones y recomendaciones. IAEA/UNDP-COL-76-031-TR Terminal Report. International Atomic Energy Agency.
  18. IAEA (2021). Releases Report on Nuclear Energy for a Net Zero World Ahead of COP26 Climate Summit. International Atomic Energy Agency.
  19. INEA (1981). Columna estratigráfica generalizada Berlín (Caldas) Antioquia - Uranio en rocas fosfóricas del Dpto. de Boyacá. Instituto de Ciencias Nucleares y Energías Alternativas.
  20. INGEOMINAS (1987). Recursos Minerales de Colombia. Publicaciones especiales del INGEOMINAS, Bogotá, D.C.
  21. Keith, M.L.; Weber, J.N. (1964). Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28(10-11), 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5
  22. Kelley, K.D.; Scott, C.; Polyak, D.E.; Kimball, B.E. (2017). Vanadium (No. 1802-U). US Geological Survey. https://doi.org/10.3133/pp1802U
  23. Kim, S.; O’Neil, J. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461-3475. https://doi.org/10.1016/S0016-7037(97)00169-5
  24. Kinney, C.R.; Schwartz, D. (1957). Partial air oxidation of Chattanooga uraniferous black shale. Industrial and Engineering Chemistry, 49(7), 1125-1130. https://doi.org/10.1021/ie50571a036
  25. Kyser, K.; Cuney, M. (2008). Recent and not-so-recent development in uranium deposits and implication for exploration. Mineralogical Association of Canada Short Course Series Vol. 39. Quebec. 221-240.
  26. Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6), 547-569. https://doi.org/10.1016/0016-7037(78)90001-7
  27. Maya, M.; González H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, 35(2-3), 43-57. https://doi.org/10.32685/0120-1425/bolgeol35.2-3.1995.316
  28. Naranjo, J.L. (1983). Investigación del potencial uranífero en los shales negros del sinclinal de Berlín, Departamento de Caldas. Undergraduate Thesis. Universidad Nacional de Colombia.
  29. Nelson, H. W. (1962). Contribución al conocimiento de la Cordillera Central de Colombia sección entre Ibagué y Armenia. Boletín Geológico, 10(1-3), 161-202. https://doi.org/10.32685/0120-1425/bolgeol10.1-3.1962.302
  30. Page, W.D. (1986). Geología sísmica y sismicidad del noroeste de Colombia, Medellín, Woodward-Clyde Consultants, ISA, Integral, p. 1-156.
  31. Pimiento, R. (2011). Mineralogía y petrografía de la mineralización de uranio en fosforitas del cretácico inferior, sinclinal de Berlín, Cordillera Central (departamento de Caldas, Colombia). Undergraduate Thesis. Universidad Industrial de Santander.
  32. Ramos, V.A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: S.M. Kay, V.A. Ramos, W.R. Dickinson (eds.). Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (pp. 31-65). vol. 204. The Geological Society of America. https://doi.org/10.1130/2009.1204(02)
  33. Ranchin, G. (1968). Contribution à lʼétude de la répartition de lʼuranium à lʼétat de traces dans les roches granitiques saines: les uraninites à teneur élevée du Massif de Saint-Sylvestre (Limousin, Massif Central français). Sciences dela Terre, 13, 159-198.
  34. Restrepo, J.J.; Toussaint, J.F. (2020). Tectonostratigraphic terranes in Colombia: An update. First part: Continental terranes. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 37-63). Volume 1, chapter 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.03
  35. Shiller, A.M.; Boyle, E.A. (1987). Dissolved vanadium in rivers and estuaries. Earth and Planetary Science Letters, 86(2-4), 214-224. https://doi.org/10.1016/0012-821X(87)90222-6
  36. Spirakis, C.S. (1996). The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11(1-3), 53-69. https://doi.org/10.1016/0169-1368(95)00015-1
  37. Vinasco, C. (2019). The romeral shear zone. In: Geology and Tectonics of Northwestern South America (pp. 833-876). Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_12
  38. Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R. (1990). Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah. Economic Geology, 85(2), 270-284. https://doi.org/10.2113/gsecongeo.85.2.270
  39. Wanty, R.B.; Goldhaber, M.B. (1992). Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochimica et Cosmochimica Acta, 56(4), 1471-1483. https://doi.org/10.1016/0016-7037(92)90217-7
  40. Zapata, S.; Cardona, A.; Jaramillo, J.S.; Patiño, A.; Valencia, V.; León, S.; Mejía, D.; Pardo-Trujillo, A.; Castañeda, J.P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207-226. https://doi.org/10.1016/j.gr.2018.10.008
  41. Zheng, Q.; Zhang, Y.; Liu, T.; Huang, J.; Xue, N.; Shi, Q. (2017). Optimal location of vanadium in muscovite and its geometrical and electronic properties by DFT calculation. Minerals, 7(3), 32. https://doi.org/10.3390/min7030032