Vol. 41 Núm. 2 (2019): Boletín de Geología
Artículos

Caracterización mineralógica de la cerámica prehispánica de la región de La Mesa de Los Santos, Colombia

Karina Andrea Portilla-Mendoza
Universidad Industrial de Santander
Biografía
Diego Armando Pinzón-Núñez
Universidad Industrial de Santander
Biografía
Leonardo Moreno-González
Universidad Industrial de Santander
Biografía
Ricardo Mier-Umaña
Universidad Industrial de Santander
Biografía
Carlos Alberto Ríos-Reyes
Universidad Industrial de Santander
Biografía
Jose Antonio Henao-Martínez
Universidad Industrial de Santander
Biografía

Publicado 2019-05-30

Palabras clave

  • Piezas,
  • cerámicas,
  • mineralogía,
  • temperaturas de cocción,
  • región de la Mesa de Los Santos

Cómo citar

Portilla-Mendoza, K. A., Pinzón-Núñez, D. A., Moreno-González, L., Mier-Umaña, R., Ríos-Reyes, C. A., & Henao-Martínez, J. A. (2019). Caracterización mineralógica de la cerámica prehispánica de la región de La Mesa de Los Santos, Colombia. Boletín De Geología, 41(2), 123–136. https://doi.org/10.18273/revbol.v41n2-2019007

Altmetrics

Resumen

La aplicación de la mineralogía en arqueología ha venido creciendo en interés en particular con relación a establecer la procedencia de las arcillas utilizadas en la elaboración de artefactos cerámicos antiguos. La mineralogía no mostró una relación clara con los colores expresados por el sistema cerámico definidos por los arqueólogos; es decir, independiente del color del engobe, cada grupo tiene los mismos componentes mineralógicos. Se seleccionaron catorce piezas de alfarería prehispánica de la región de la Mesa de Los Santos (Colombia) para la caracterización mineralógica por difracción de rayos X, microscopía electrónica de barrido y espectroscopia infrarroja de transformada de Fourier. El objetivo del trabajo fue contribuir al conocimiento de la tecnología de producción y dilucidar una posible procedencia regional de estas cerámicas. Las fases mineralógicas observadas fueron plagioclasa, cuarzo, feldespato potásico, minerales de arcilla, micas, minerales de carbonato y óxidos de hierro. Las temperaturas de cocción están en los rangos 600-800°C para casi todas las muestras analizadas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Barone, G., Lo Giudice, A., Mazzoleni, P., Pezzino, A., Barilaro, D., Crupi, V., and Triscari, M. (2005). Chemical characterization and statistical multivariate analysis of ancient pottery from Messina, Catania, Lentini and Sicarusa (Sicily). Archaeometry, 47(4), 745-762. doi: 10.1111/j.1475-4754.2005.00230.x.

Barrios-Neira, J., Montealegre, L., López, L.A., and Romero, L. (2009). Ceramics of Ategua (Córdoba, Spain): mineralogical and petrographic study. Applied Clay Science, 42(3-4), 529-537. doi: 10.1016/j.clay.2008.06.018.

Belfiore, C.M., Day, M.D., Hein, A., Kilikoglou, V., La Rosa, V., Mazzoleni, P., and Pezzion, A. (2007). Petrographic and chemical characterization of pottery production of the late Minoan I Kiln at Hagia triada, Crete. Archaeometry, 49(4), 621-653. doi: 10.1111/j.1475-4754.2007.00324.x.

Belfiore, C.M., di Bella, M., Triscari, M., and Viccaro, M. (2010). Production technology and provenance study of archaeological ceramics from relevant sites in the Acantary River Valley (North-eastern Sicily). Materials Characterization, 61(4), 440-451. doi: 10.1016/j.matchar.2010.01.012.

Bong, W.S.K., Matsumura, K., Yokoyama, K., and Nakai, I. (2010). Provenance study of early and middle bronze age pottery from Kaman-Kalehöyük, Turkey, by heavy mineral analysis and geochemical analysis of individual hornblende grains. Journal of Archaeological Science, 37(9), 2165-2178. doi: 10.1016/j.jas.2010.03.013.

Chaikina, M.V., and Kryukova, G.N. (2004). Structural transformations in quartz and apatite on mechanical activation. Journal of Structural Chemistry, 45(Supplement 1), 121-126. doi: 10.1007/s10947-006-0106-1.

Chakchouk, A., Trifi, L., Samet, B., and Bouaziz, S. (2009). Formulation of blended cement: Effect of process variables on clay pozzolanic activity. Construction and Building Materials, 23(3), 1365-1373. doi: 10.1016/j.conbuildmat.2008.07.015.

Damjanović, L., Bikić, V., Šarić, K., Erić, S., and Holclajtner-Antunović, I. (2014). Characterization of the early Byzantine pottery from Caričin Grad (South Serbia) in terms of composition and firing temperature. Journal of Archaeological Science, 46, 156-172. doi: 10.1016/j.jas.2014.02.031.

Dowty, E. (1987). Vibrational interactions of tetrahedra in silicate glasses and crystals. Physics and Chemistry of Minerals, 14(1), 80-93. doi: 10.1007/BF00311151.

Dubnikova, N., Garskaite, E., Beganskiene, A., and Kareiva, A. (2011). Sol–gel synthesis and characterization of sub-microsized lanthanide (Ho, Tm, Yb, Lu) aluminium garnets. Optical Materials, 33(8), 1179-1184. doi: 10.1016/j.optmat.2011.02.008.

Frost, R.L., Horváth, E., Makóc, E., Kristóf, J., and Rédey, A. (2003). Slow transformation of mechanically dehydroxylated kaolinite to kaolinite - an aged mechanochemically activated formamide - intercalated kaolinite study. Thermochimica Acta, 408(1-2), 103-113. doi: 10.1016/S0040-6031(03)00316-2.

Grapes, R. (2010). Pyrometamorphism. 2nd edition, Heidelberg: Springer.

Grifa, C., De Bonis, A., Langella, A., Mercurio, M., Soricelli, G., and Morra, V. (2013). A Late Roman ceramic production from Pompeii. Journal of Archaeological Science, 40(2), 810-826. doi: 10.1016/j.jas.2012.08.043.

Holakooei, P., Tessari, U., Verde, M., and Vaccaro, C. (2014). A new look at XRD patterns of archaeological ceramic bodies: an assessment for the firing temperature of 17th century haft rang tiles from Iran. Journal of Thermal Analysis and Calorimetry, 118(1), 165-176. doi: 10.1007/s10973-014-4012-z.

Iordanidis, A., Garcia-Guinea, J., and Karamitrou-Mentessidi, G. (2009). Analytical study of ancient pottery from the archaeological site of Ariani, northern Greece. Materials Characterization, 60(4), 292-302. doi: 10.1016/j.matchar.2008.08.001.

İssi, A., Kara, A., and Alp, A.O. (2011). An investigation of Hellenistic period pottery production technology from Harabezikan/Turkey. Ceramics International, 37(7), 2575-2582. doi: 10.1016/j.ceramint.2011.04.001.

Kahl, W.A., and Ramminger, B. (2012). Non-estructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: a pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. Journal of Archaeological Science, 39(7), 2206-2219. doi: 10.1016/j.jas.2012.02.029.

Kakali, G., Perraki, T., Tsivilis, S., and Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20(1-2), 73-80. doi: 10.1016/S0169-1317(01)00040-0.

Kramar, S., Lux, J., Mladenović, A., Pristacz, H., Mirtič, B., Sagadin, M., and Rogan-Šmuc, N. (2012). Mineralogical and geochemical characteristics of Roman pottery from an archaeological site near Mošnje (Slovenia). Applied Clay Science, 57, 39-48. doi: 10.1016/j.clay.2011.12.008.

Lettieri, M. (2015). Infrared spectroscopic characterization of residues on archaeological pottery through different spectra acquisition modes. Vibrational Spectroscopy, 76, 48-54. doi: 10.1016/j.vibspec.2014.12.002.

Liou, Y. (2015). Multi-technique study of archaeological cord-marked wares decorated with red coatings from Taiwan. Journal of Raman Spectroscopy, 46(1), 133-140. doi: 10.1002/jrs.4621.

Mangone, A., Giannossa, L.C., Laviano, R., Fiorello, C.S., and Traini, A. (2009). Investigation by various analytical techniques to the correct classification of archaeological finds and delineation of technological features. Late Roman lamps from Egnatia. From imports to local production. Microchemical Journal, 91(2), 214-221. doi: 10.1016/j.microc.2008.11.006.

Maniatis, Y., and Tite, M. (1978). Ceramic technology in the Aegean world during the Bronze Age. In: C. Doumas (ed.). Thera and the Aegean world (pp. 482-492). Vol. 1, London.

Maniatis, Y., and Tite, M. (1981). Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East. Journal of Archaeological Science, 8(1), 59-76. doi: 10.1016/0305-4403(81)90012-1.

Moreno-González, L. (2012). Una aproximación a la sociología religiosa de la cultura prehispánica Guane: muerte y prácticas funerarias. Anuario de Historia Regional y de las Fronteras, 17(1), 13-25.

Moroni, B., and Conti, C. (2006). Technological features of Renaissance pottery from Deruta (Umbria, Italy): an experimental study. Applied Clay Science, 33(3-4), 230-246. doi: 10.1016/j.clay.2006.05.002.

Noll, W., and Heimann, R.B. (2016). Ancient old world pottery: Materials, technology, and decoration. Stuttgart: Schweizerbart Science Publishers.

Palanivel, R., and Velraj, G. (2007). FTIR and FT-Raman spectroscopic studies of fired clay artifacts recently excavated in Tamilnadu, India. Indian Journal of Pure & Applied Physics, 45, 501-508.

Palanivel, R., and Rajesh-Kumar, U. (2011). The mineralogical and fabric analysis of ancient pottery artifacts. Cerâmica, 57(341), 56-62.

Ravisankar, R., Naseerutheen, A., Raja-Annamalai, G., Chandrasekaran, A., Rajalakshmi, A., Kanagasabapathy, K.V., Prasad, M.V.R., and Satpathy, K.K. (2014). The analytical investigations of ancient pottery from Kaveripakkam, Vellore dist, Tamilnadu by spectroscopic techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 457-463. doi: 10.1016/j.saa.2013.10.110.

Schrader, B. (1995). Infrared and Raman Spectroscopy: Methods and applications. Weinheim: VCH.

Schwedt, A., and Mommsen, H. (2004). Clay paste mixtures identified by neutron activation analyses in pottery of a Roman workshop in Bonn, Germany. Journal of Archaeological Science, 31(9), 1251-1258. doi: 10.1016/j.jas.2004.02.003.

Sciau, P. (2016). Nano-crystallization in decorative layers of Greek and Roman ceramics. In: P. Dillmann, L. Bellot-Gurlet, I. Nenner (eds.). Nanoscience and Cultural Heritage (pp. 41-58). Paris: Atlantis Press. doi: 10.2991/978-94-6239-198-7_2.

Sherriff, B.L., Court, P., Johnston, S., and Striling, L. (2002). The source of raw materials for Roman pottery from Leptiminus, Tunisia. Geoarchaeology: An International Journal, 17(8), 835-861. doi: 10.1002/gea.10043.

Tarquini, G., Nunziante-Cesaro, S., and Campanella, L. (2014). Identification of oil residues in Roman amphorae (Monte Testaccio, Rome): a comparative FTIR spectroscopic study of archeological and artificially aged samples. Talanta, 118, 195-200. doi: 10.1016/j.talanta.2013.09.060.

Tite, M.S., Freestone, I.C., Meeks, N.D., and Bimson, M. (1982). The use of scanning electron microscopy in the technological examination of ancient ceramics. In: A.D. Franklin, J. Olin (eds.). Ceramics as Archaeological Material (pp. 109-120). Washington: Smithsonian Institution Press.

Trindade, M.J., Dias, M.I., Coroado, J., and Rocha, F. (2009). Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42(3-4), 345-355. doi: 10.1016/j.clay.2008.02.008.

Velraj, G., Janaki, K., Mohamed-Musthafa, A., and Palanivel, R. (2009). Spectroscopic and porosimetry studies to estimate the firing temperature of some archaeological pottery shreds from India. Applied Clay Science, 43(3-4), 303-307. doi: 10.1016/j.clay.2008.09.005.

Velraj, G., Tamilarasu, S., and Ramya, R. (2015). FTIR, XRD and SEM-EDS studies of archaeological pottery samples from recently excavated site in Tamil Nadu, India. Materials Today: Proceedings, 2(3), 934-942. doi: 10.1016/j.matpr.2015.06.012.

Whitney, D.L., and Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. doi: 10.2138/am.2010.3371.

Zhou, Y.S., He, C.R., and Yang, X.S. (2008). Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China. Science in China Series D: Earth Sciences, 51(10), 1411-1425. doi: 10.1007/s11430-008-0115-3.