Publicado 2018-02-23
Palabras clave
- Mina Los Mangos,
- oro orogénico,
- vetiforme,
- zona de cizalla,
- telururos
- isótopos estables ...Más
Cómo citar
Altmetrics
Resumen
La mina Los Mangos es un depósito vetiforme encajado en una zona de cizalla sinestral con deformación frágildúctil que generó milonitización de la roca encajonante, estructuras sigmoidales, boudinage y contactos veta-caja reactivados con presencia de salbanda (gouge). Se observaron al menos dos etapas de mineralización: la primera caracterizada por Qz + Py ± Au y la segunda etapa por Qz + Py + Cpy + Gn + telururos de Au-Ag (silvanita y hessita) + telururos de Pb (altaita) + telururos de Au (calaverita) + telururos de Hg (coloradoita). Las alteraciones hidrotermales y la asociación paragenética observada permite sugerir que especies como H2S o HS- fueron dominantes en los fluidos mineralizantes y en consecuencia, el complejo Au(HS)-2 fue probablemente el ligante y el medio de transporte del Au. La presencia de texturas de recristalización tipo Bulging permitieron inferir condiciones de temperatura bajas (<350°C) y condiciones de deformación frágil-dúctil. Los valores isotópicos de δ18O en moscovitas hidrotermales varían entre +11,5 y +12,9%o, los valores de δD varían entre -58,5 y -63,4%o y los valores de azufre δ34S en pirita varían entre +3,0 y +1,0%o. Los valores de δ18Oagua varían entre +10,6%o y 12,0%o y los valores de δDagua varían entre -43,4%o y -38,5%o. Estos valores isotópicos de δ18O, δD y δ34S muestran una afinidad magmática y/o metamórfica para el fluido mineralizante. Las características geológicas del depósito, incluyendo control estructural, mineralogía, roca encajante, alteración hidrotermal, estilo de mineralización y composición isotópica de δ18O, δD y δ34S, indican que el depósito en la mina Los Mangos es compatible con el modelo de depósitos de oro orogénico (Orogenic Gold Deposits) del subtipo: Depósitos de Filones Auríferos Hospedados en Granitoides (Granitoid-Hosted Lode-gold Deposits).
Descargas
Referencias
Brown, S.M., Johnson, C.A., Watling, R.J., and Premo, W.R. (2003). Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia. Australian Journal of Earth Sciences, 50(1), 19-38. doi: 10.1046/j.1440-0952.2003.00971.x.
Cediel, F., and Cáceres, C. (2000). Geological Map of Colombia. Third Ed. Geotec Ltd., Bogotá.
Clayton, R.N., and Mayeda, T. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27(1), 43-52. doi: 10.1016/0016-7037(63)90071-1.
Cook, N.J., Ciobanu, C.L., Spry, P.G., and Voudouris, P. (2009). Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes, 32(4), 249-263.
Corbett, G., and Leach, T. (1997). Southwest Pacific Rim gold-copper systems: Structure, alteration and mineralization. Short Course Manual. 318p.
Goldfarb, R.J., Baker, T., Dubé, B., Groves D.I., Hart C.J.R., and Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology, 100th Anniversary, 407-450.
Groves, D.I, Goldfarb, R.J., Robert, F., and Hart, J.R. (2003). Gold deposits in metamorphic belt: Overviews of current understanding, outstanding problems, future research and exploration significance. Economic Geology, 98(1), 1-29. doi: 10.2113/gsecongeo.98.1.1.
Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5), 7-27. doi: 10.1016/S0169-1368(97)00012-7.
Haeberlin, Y. (2002). Geological and Structural Setting, Age, and Geochemistry of the Orogenic Gold Deposits at the Pataz Province, Eastern Andean Cordillera, Peru. Ph.D. Thesis. Université de Genève, Switzerland.
Haeberlin, Y., Moritz, R., Fontbote, L., and Cosca, M. (2004). Carboniferous orogenic gold deposits at Pataz, eastern Andean Cordillera, Peru: geological and structural framework, paragenesis, alteration, and 40Ar/39Ar geochronology. Economic Geology, 99(1), 73-112.
Hart, C.J.R. (2005). Classifying, distinguishing and exploring for intrusion related gold systems. The Gangue: Newsletter of the Geological Association of Canada Mineral Deposits Division, 87, 1-9.
Irvine, T.N., and Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523-548. doi: 10.1139/e71-055.
Jia, Y., Kerrich, R., and Goldfarb, R. (2003). Metamorphic origin of ore-forming fluids for orogenic gold-bering quartz vein system in the North American Cordillera: Constraints from a reconnaissance study of δ15N, δD and δ18O. Economic Geology, 98(1), 109-123. doi: 10.2113/gsecongeo.98.1.109.
Klein, E.L., Harris, C., Giret, A., Moura C., and Angelica R.S. (2005). Geology and stable isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi Belt, northern Brazil. Chemical Geology, 221(3-4), 188-206. doi: 10.1016/j.chemgeo.2005.05.003.
Kreuzer, O.P. (2006). Textures, paragenesis and wall-rock alteration of lode-gold deposits in the Charters Towers district, north Queensland: implications for conditions of ore formation. Mineralium Deposita, 40, 639-663. doi: 10.1007/s00126-005-0010-1.
Lambert, S.J., and Epstein, S. (1980). Stable isotope investigations of an active geothermal system in Valles Caldera, Jemez Mountains, New Mexico. Journal of Volcanology and Geothermal Research, 8(1), 111-129. doi: 10.1016/0377-0273(80)90010-4.
Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach. Ph.D. Thesis. Universidad de Barcelona, España.
Londoño, C., Montoya, J.C., Ordoñez, O., y Restrepo, J.J. (2009). Características de las mineralizaciones vetiformes en el Distrito Minero Bagre-Nechí, Antioquia. Boletín de Ciencias de la Tierra, 26, 29-38.
Maniar, P.D., and Piccoli, P.M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
McCuaig, T.C., and Kerrich, R. (1998). P–T–t–deformation–fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews, 12(6), 381-453. doi: 10.1016/S0169-1368(98)80002-4.
Middlemost, E.A. (1994). Naming materials in the magma/igneous rock system. Earth- Science Reviews, 37(3-4), 215-224. doi: 10.1016/0012-8252(94)90029-9.
Mikucki, E. (1998). Hydrothermal transport and depositional processes in Archaean lode–gold systems: a review. Ore Geology Reviews, 13(1-5), 307-321. doi: 10.1016/S0169-1368(97)00025-5.
Moritz, R. (2000). What have we learn about orogenic lode gold deposits over the past 20 years?. Scientific Communication. Section des Sciences de la Terre. University of Geneva, Switzerland. p. 1-7.
Naranjo-Sierra, E., Alvaran-Echeverri, M., y Zapata-Cardona, E. (2016). Análisis metalogenético preliminar del depósito vetiforme en mina La Ye, Antioquia-Colombia: características geológicas, isotópicas y estructurales. Revista Mexicana de Ciencias Geológicas, 33(3), 316-328.
Ohmoto, H., and Goldhaber, M.B. (1997). Sulfur and carbon isotopes. In H.L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 517- 612), 3rd ed. New York: John Wiley & Sons.
Owona, S., Ondoa, J.M., and Ekodeck, G.E. (2013). Evidence of quartz, feldspar and amphibole crystal plastic deformations in the paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite conditions (west Central African Fold Belt, SW Cameroon). Journal of Geography and Geology, 5(3), 186-201. doi: 10.5539/jgg.v5n3p186.
Pearce, J.A., Harris, N.W., and Tindle, A.G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
Pirajno, F. (1992). Hydrothermal Mineral Deposits: Principles and fundamental concepts for the exploration geologist. Berlin: Springer-Verlag.
Qiu, Y., Groves, D.I., McNaughton, N.J., Wang, L., and Zhou, T. (2002). Nature, age and tectonic setting of granitoid-hosted, orogenic gold deposits in the Jiaodong Peninsula, eastern North China craton, China. Mineralium Deposita, 37(3-4), 283-305. doi: 10.1007/s00126-001-0238-3.
Restrepo, J.J., and Toussaint, J.F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3), 189-193.
Ridley, R.J., and Diamond, L. (2000). Fluid chemistry of orogenic lode gold deposits and implications for genetic models. SEG Reviews, 13, 141-162.
Rimstidt, J.D. (1997). Gangue mineral transport and deposition. In H.B. Barnes (Ed.), Geochemistry of hydrothermal ore deposits, (pp. 487-515). John Wiley & Sons.
Rollinson, H. (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman.
Rye, R.O. (2005). A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215(1-4), 5-36. doi: 10.1016/j.chemgeo.2004.06.034.
Seal II, R.R. (2006). Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1), 633-677. doi: 10.2138/rmg.2006.61.12.
Shaw, R.P. (2000). Gold mineralization in the Northern Andes: magmatic setting vs. metallogeny. XI International Mining Congress, Bogotá.
Sheppard, S.M. (1981). Stable isotope geochemistry of fluids. Physics and Chemistry of the Earth, 13-14, 419-445.
Sillitoe, R.H. (2008). Major gold deposits and belts of the North and South American Cordillera: Distribution, tectonomagmatic settings, and metallogenic considerations. Economic Geology, 103(4), 663-687. doi: 10.2113/gsecongeo.103.4.663.
Sillitoe, R.H., and Thompson, J.F.H. (1998). Intrusion-related vein gold deposits: types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Resource Geology, 48(4), 237-250. doi: 10.1111/j.1751-3928.1998.tb00021.x.
Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95-139. doi: 10.1016/j.gr.2014.06.004.
Starling, A. (2014). Structural review of La Ye mine and District. Internal Field Report prepared for Mineros S.A and Operadora Minera S.A.S.
Starling, A. (2015). Structural review of La Ye and Icacales-Los Mangos mines. Internal Field Report prepared for Mineros S.A and Operadora Minera S.A.S.
Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S.M. (2002). The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology, 24(12), 1861-1884. doi: 10.1016/S0191-8141(02)00035-4.
Takagi, T., and Tsukimura, K. (1997). Genesis of oxidized and reduced-type granites. Economic Geology, 92(1), 81-86. doi: 10.2113/gsecongeo.92.1.81.
Taylor, H.P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6), 843-883. doi: 10.2113/gsecongeo.69.6.843.
Taylor, H.P. (1997). Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In H.L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 229-302), 3rd ed. New York: John Wiley & Sons.
Ueda, A., and Krouse, H.R. (1986). Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses. Geochemical Journal, 20, 209-212.
Varona-Bravo, D.S., Naranjo-Sierra, E., y Toro, L.M. (2016). Características geoquímicas y petrográficas del stock El Carmen en el distrito minero El Bagre. Reporte Interno. Operadora Minera S.A.S.
Vinasco, C.J., Cordani, U.G., González, H., Weber, M., and Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. doi: 10.1016/j.jsames.2006.07.007.