Vol. 46 Núm. 2 (2024): Boletín de Geología
Artículos científicos

Caracterización metalográfica y microtermométrica del proyecto Estrella-Diamantina, distrito minero Remedios-Segovia-Zaragoza, Antioquia-Colombia

Isabella Aguirre-Murillo
Universidad de Caldas
Esteban Franco-Hernández
Universidad de Caldas
Edwin Naranjo-Sierra
Universidad de Caldas

Publicado 2024-06-14

Palabras clave

  • Inclusiones fluidas,
  • Sistemas vetiformes,
  • Oro,
  • Sistema de fallas Otú-Pericos,
  • Análisis multielemental

Cómo citar

Aguirre-Murillo, I., Franco-Hernández, E., & Naranjo-Sierra, E. . (2024). Caracterización metalográfica y microtermométrica del proyecto Estrella-Diamantina, distrito minero Remedios-Segovia-Zaragoza, Antioquia-Colombia. Boletín De Geología, 46(2), 83–104. https://doi.org/10.18273/revbol.v46n2-2024005

Altmetrics

Resumen

El proyecto de exploración Estrella-Diamantina se encuentra localizado en el flanco oriental de la Cordillera Central, en el sector norte del distrito minero Remedios-Segovia-Zaragoza (DMRSZ), al oeste del sistema de fallas Otú-Pericos, y hospedado en rocas metamórficas del Complejo Cajamarca. Las características de los fluidos mineralizantes fueron analizadas usando petrografía de minerales de mena y alteración, complementado con un análisis de ICP-MS. La evolución composicional y termal de los fluidos mineralizantes fue interpretada con base en la petrografía de inclusiones fluidas y en un análisis microtermométrico. Los análisis de geoquímica multielemental permitieron identificar las asociaciones Au-Ag, Au-Pb, Au-Zn y Au±Cu. Se definieron cuatro etapas mineralizantes: la primera etapa está caracterizada por Qz1+Py1+Ccp1+Po+Cbn con temperaturas de homogenización entre 188,6° y 225°C y salinidades entre 3,14% y 12,05% (%wt NaCl equiv.). La segunda y principal etapa mineralizante está caracterizada por Qz2+Cal1+Py1+Ccp2+Po+Gn1+Sp+Au1, con temperaturas entre 159,2° y 210°C y salinidades menores a 9,86% (%wt NaCl equiv.). La tercera etapa mineralizante está representada por Qz3+Qz4+Gn2+Au2±Mk con temperaturas que oscilan entre 157° y 204°C y salinidades de 0,88% y 8,8% (%wt NaCl equiv.). La cuarta etapa mineralizante y el cierre del sistema está caracterizado por vetillas de Cal2+Py3, con temperaturas desde 103,8°C hasta 140°C y salinidades entre 0,18% y 3,71% (%wt NaCl equiv.). La asociación mineralógica indica que el fluido mineralizante era neutro a ligeramente alcalino y relativamente reducido con base en la ausencia de hematita y la coexistencia de pirita y clorita. Bajo estas condiciones, los iones HS2 o HS- fueron las especies de sulfuro dominantes en el fluido hidrotermal y, consecuentemente, los iones complejos Au (HS)2- o Au (HS) fueron probablemente los iones complejos para el transporte del oro. Con base en los resultados presentados aquí, el sistema vetiforme mineralizado Estrella-Diamantina muestra características similares a los depósitos de oro orogénico.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Álvarez-Galíndez, M.; Ordóñez-Carmona, O.; Valencia-Marín, M.; Romero-Hernández, A. (2007). Geología de la zona de influencia de la falla Otú en el distrito minero Segovia-Remedios. Dyna, 74(153), 41-51.
  2. Arango-Escobar, J.E.; Toro-Toro, L.M.; Moreno-Sánchez, M.; Ruíz-Jiménez, E.C. (2021). Petrografía y evolución tectónica de los esquistos del Complejo Arquía, al occidente de Manizales en el sector de La Manuela, vías Palestina y Chinchiná, Colombia. Boletín de Geología, 43(3), 63-86. https://doi.org/10.18273/revbol.v43n3-2021003
  3. Ayala, J.; Montoya, P. (2004). Ambiente geológico y caracterización mineralógica de la mina El Limón y sus alrededores, Zaragoza-Antioquia. Tesis de pregrado, Universidad Nacional de Colombia, Medellín.
  4. Bakker, R.J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23. https://doi.org/10.1016/S0009-2541(02)00268-1
  5. Barnes, H. (1997). Geochemistry of hydrothermal ore deposits. John Wiley y Sons, 3ra edición. https://doi.org/10.1017/S0016756898431509
  6. Benning, L.G.; Seward, T.M. (1996). Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bar. Geochimica et Cosmochimica Acta, 60(11), 1849-1871. https://doi.org/10.1016/0016-7037(96)00061-0
  7. Bodnar, R. (1993). Revised equation and table for determining the freezing point depression of H 2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3), 683-684. https://doi.org/10.1016/0016-7037(93)90378-A
  8. Bodnar, R.J.; Vityk, M.O. (1994). Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: B. De Vivo, M.L. Frezzotti (eds.). Fluid inclusions in minerals: Methods and applications (pp. 117-130). Virginia Tech.
  9. Bogotá, J.; Aluja, J. (1981). Geología de la Serranía de San Lucas. Geología Norandina, 4, 49-56.
  10. Borisenko, A.S. (1977). Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Soviet Geology and Geophysics, 18, 11-19.
  11. Castaño-Dávila, D.L. (2017). Estudio Mineralógico y Microtermométrico de las Mineralizaciones Auríferas Asociadas a la Veta de la Mina La Aurora en el Distrito Zaragoza-Segovia, Antioquia-Colombia. Tesis de maestría, Universidad de Caldas, Manizales.
  12. Castaño-Dávila, D.L.; Hernández-González, J.S.; Molano-Mendoza, J.C.; Rodríguez-Vargas, A.I. (2019). Mineralogía y microtermometría de inclusiones fluidas de la veta con mineralización Au-Ag de la mina La Aurora en la parte norte del Distrito Minero Zaragoza-Segovia-Remedios (DMZSR), Colombia. Boletín de Geología, 41(3), 107-125. https://doi.org/10.18273/revbol.v41n3-2019005
  13. Cediel, F.; Shaw, R.P.; Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. In: C. Bartolini; R.T. Buffler; J.F. Blickwede (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics (pp. 815-848). AAPG. https://doi.org/10.1306/M79877C37
  14. Clavijo, J.; Mantilla, L.; Pinto, J.; Bernal, L.; Pérez, A. (2008). Evolución geológica de la Serranía de San Lucas, norte del Valle Medio del Magdalena y noroeste de la Cordillera Oriental. Boletín de Geología, 30(1), 45-62.
  15. Dowling, K.; Morrison, G. (1989). Application of quartz textures to the classification of gold deposits using North Queensland examples. In: R. Keays, W. Ramsay, D. Groves (eds.). Economic Geology Monograph (pp. 342-355). Economic Geology Publishing Co. https://doi.org/10.5382/Mono.06.26
  16. Drummond, S.E.; Ohmoto, H. (1985). Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1), 126-147. https://doi.org/10.2113/gsecongeo.80.1.126
  17. Dubé, B.; Gosselin, P. (2007). Greenstone-hosted quartz -carbonate vein deposits. In: W.D. Goodefellow (ed.). Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (pp. 1-13). Geological Association of Canada.
  18. Echeverri, B. (2006). Genesis and Thermal History of Gold Mineralization in the Remedios - Segovia - Zaragoza Mining District of Northern Colombia. Tesis de Maestría, Universidad de Shimane. Matsue, Japón.
  19. Feininger, T.; Barrero, D.; Castro, N. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Sub-Zona II-B). Boletín Geológico, 20(2), 1-173. https://doi.org/10.32685/0120-1425/bolgeol20.2.1972.321
  20. Ferrill, D.A.; Morris, A.P.; Evans, M.A.; Burkhard, M.; Groshong Jr, R.H.; Onasch, C.M. (2004). Calcite twin morphology: a low-temperature deformation geothermometer. Journal of structural Geology, 26(8), 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028
  21. Giraldo-Osorio, D.A.; Loaiza-Quiceno, J.K. (2021). Caracterización metalográfica y petrográfica de las mineralizaciones vetiformes presentes en los prospectos Santa Elena y Santa María en el distrito minero Nechí, sur de Bolívar. Tesis, Universidad de Caldas, Manizales, Colombia.
  22. Goldfarb, R.J.; Baker, T.; Dubé, B.; Groves, D.I.; Hart, C.; Gosselin, P. (2005). Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terran. In: J.W. Hedenquist, J.F.H. Thompson; R.J. Goldfarb; J.P. Richards (eds). One Hundredth Anniversary Volume (pp. 407-450). Society of Economic Geologists. https://doi.org/10.5382/AV100.14
  23. Goldfarb, R.J.; Groves, D.I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233, 2-26. https://doi.org/10.1016/j.lithos.2015.07.011
  24. Goldfarb, R.J.; Pitcairn, I. (2023). Orogenic gold: is a genetic association with magmatism realistic? Mineralium Deposita, 58, 5-35. https://doi.org/10.1007/s00126-022-01146-8
  25. Goldstein, R.H. (2003). Petrographic analysis of fluid inclusions. In: I. Samson, A. Anderson, D. Marshall (eds). Fluid inclusions: Analysis and interpretation (pp. 9-53). Vol. 32, Mineralogical Association of Canada. https://doi.org/10.3749/9780921294672.ch02
  26. Gómez-Tapias, J.; Montes-Ramírez, N.E.; Marín, E. (2023). Mapa Geológico de Colombia 2023. Escala 1:1 500 000. Servicio Geológico Colombiano. Bogotá.
  27. González, H. (2001). Mapa Geológico de Antioquia Escala 1:400000. INGEOMINAS.
  28. González, J.; Terán, B.; Ordóñez-Carmona, O. (2010). Geología de la Parte Oriental del Distrito Minero Segovia - Remedios. Boletín de Ciencias de la Tierra, 28, 61-76.
  29. Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Rober, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5), 7-27. https://doi.org/10.1016/S0169-1368(97)00012-7
  30. Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J. (2003). Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1), 1-29. https://doi.org/10.2113/gsecongeo.98.1.1
  31. Hagemann, S.G., Cassidy K.F. (2000). Archean Orogenic Lode Gold Deposits. In: S.G. Hagemann; P.E. Brown (eds.). Reviews in Economic Geology, Gold in 2000 (pp. 9-68). Society of Economic Geologist. https://doi.org/10.5382/Rev.13.01
  32. Hall, R.; Feininger, T.; Barrero, D.; Rico, H.; Álvarez, J. (1970). Recursos minerales de parte de los departamentos de Antioquia y Caldas. Boletín Geológico, 18(2), 1-90. https://doi.org/10.32685/0120-1425/bolgeol18.2.1970.55
  33. Hart, C.J.; Goldfarb, R.J. (2005). Distinguishing intrusion-related from orogenic gold systems. New Zealand Minerals Conference, Auckland, Nueva Zelanda.
  34. Hayashi, K.I.; Ohmoto, H. (1991). Solubility of gold in NaCl- and H2S-bearing aqueous solutions at 250-350°C. Geochimica et Cosmochimica Acta, 55(8), 2111-2126. https://doi.org/10.1016/0016-7037(91)90091-I
  35. Klein, E.L.; Harris, C.; Giret, A.; Moura, C.; Angelica, R.S. (2005). Geology and isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi belt, northern Brazil. Chemical Geology, 221(3-4), 188-206. https://doi.org/10.1016/j.chemgeo.2005.05.003
  36. Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach. Tesis Doctoral, Universidad de Barcelona.
  37. Leal-Mejía, H.; Shaw, R.P.; Melgarejo i Draper, J.C. (2019). Spacial - Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono - Magmatic Evolution of the Colombian Andes. In: F. Cediel, R.P. Shaw (eds). Geology and Tectonics of Northwestern South America (pp. 253-410). Springer. https://doi.org/10.1007/978-3-319-76132-9_5
  38. Londoño, C.; Montoya, J.C.; Ordóñez, O.; Restrepo, J.J. (2009). Características de las mineralizaciones vetiformes en el Distrito Minero Bagre - Nechí, Antioquia. Boletín de Ciencias de la Tierra, 26, 29-38.
  39. López, D. (2004). Distribución de Zonas de Enriquecimiento Mineral y Modelamiento Estructural, Mina El Limón, Zaragoza-Antioquia. Tesis de grado, Universidad Nacional de Colombia, Medellín.
  40. Manco, J.D.; Molano, J.C.; Ordóñez, O. (2012). Análisis paragenético y microtermométrico de las mineralizaciones auro-argentíferas del Distrito Minero Segovia - Remedios (DMSR): Implicaciones para la fuente y naturaleza de los fluídos mineralizantes. Boletín de Ciencias de la Tierra, 32, 47-60.
  41. Marshall, D.D.; Anglin, C.D.; Mumin, A.H. (2004). Ore mineral atlas. Geological Association of Canada. Mineral Deposits Division.
  42. Maya, M.; González, H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, 35(2-3), 44-57. https://doi.org/10.32685/0120-1425/bolgeol35.2-3.1995.316
  43. Mendoza, F.A.; Giraldo, K.A. (2012). Cartografía Geológica de Superficie en Escala 1.2.000 de la Mina El Limón y sus Alrededores. Zaragoza-Antioquia. Informe interno para la compañía FOUR POINTS MINING S.A.S.
  44. Monterroza, A. (2005). Informe de Práctica Empresarial, Cartografía Geotécnica y Direcciones de Zonas Mineralizadas, Mina El Limón, Zaragoza-Antioquia. Tesis de pregrado, Universidad Nacional de Colombia, Medellín.
  45. Moreno-Sánchez, M.; Gómez-Cruz, A.; Buitrago-Hincapié, J. (2020). Paleozoic of Colombian Andes: New Paleontological Data and Regional Stratigraphic Review. In: J. Gómez, D. Mateus, E. Marín (eds). The Geology of Colombia, (pp. 167-203). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.09
  46. Moritz, R. (2000). What have we learn about orogenic lode gold deposits over the past 20 years. University of Geneva, Switzerland: Scientific Communication. Section des Sciences de la Terre.
  47. Naranjo-Sierra, E.; Alvarán-Echeverri, M.; Zapata-Cardona, E. (2016). Análisis metalogenético preliminar del depósito vetiforme en mina La Ye, Antioquia-Colombia: características geológicas, isotópicas y estructurales. Revista Mexicana de Ciencias Geológicas, 33(3), 316-328.
  48. Naranjo-Sierra, E.; Alvarán-Echeverri, M. (2018). Características geológicas, isotópicas y estructurales del depósito vetiforme Los Mangos, Antioquia-Colombia. Boletín de Geología, 40(1), 93-108. https://doi.org/10.18273/revbol.v40n1-2018006
  49. Naranjo-Sierra, E.; Alvarán-Echeverri, M. (2020). Fluid inclusion study of shear zone hosted lode gold type deposits: El Bagre mining district, Antioquia-Colombia. Earth Sciences Research Journal, 24(3), 245-257. https://doi.org/10.15446/esrj.v24n3.80653
  50. Oakes, C.S.; Bodnar, R.J.; Simonson, J.M. (1990). The system NaCl-CaCl2-H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta, 54(3), 603-610. https://doi.org/10.1016/0016-7037(90)90356-P
  51. Ordóñez-Carmona, O.; Valencia-Marín, M.; Álvarez-Galíndez, M.J.; Sánchez-Arredondo, L.H.; Castaño-Gallego, L.G.; Echeverri, B. (2005). Metalogenia y evolución tectonomgmática del distrito minero Segovia - Remedios, Primera Aproximación. X Congreso Colombiano de Geología. Bogotá.
  52. Owona, S.; Ondoa, J.M.; Ekodeck, G.E. (2013). Evidence of quartz, feldspar and amphibole crystal plastic deformations in the paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite conditions (west Central African Fold Belt, SW Cameroon). Journal of Geography and Geology, 5(3). https://doi.org/10.5539/jgg.v5n3p186
  53. Phillips, G.N.; Powell, R. (2010). Formation of gold deposits: a metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6), 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
  54. Ramdohr, P. (2013). The ore minerals and their intergrowths. Elsevier.
  55. Restrepo, J.J.; Toussaint, J.F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3), 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006
  56. Restrepo, J.J.; Ordóñez-Carmona, O.; Armstrong, R.; Pimentel, M.M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 32(4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
  57. Restrepo, J.J.; Toussaint, J.F. (2020). Tectonostratigraphic Terranes in Colombia: An Update First Part: Continental Terranes. In: J. Gómez, D. Mateus, E. Marín (eds.). The Geology of Colombia (pp. 37-63). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.03
  58. Ridley, J.R.; Diamond, L.W. (2000). Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models. SEG Reviews, 141-162. https://doi.org/10.5382/Rev.13.04
  59. Rimstidt, J.D. (1997). Quartz solubility at low temperatures. Geochimica et Cosmochimica Acta, 61(13), 2553-2558. https://doi.org/10.1016/S0016-7037(97)00103-8
  60. Rodríguez, C.J.; Pernet, A. (1983). Recursos minerales de Antioquia. Boletín Geológico, 26(3), 2-116. https://doi.org/10.32685/0120-1425/bolgeol26.3.1983.247
  61. Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, 12, 149-220. https://doi.org/10.1515/9781501508271
  62. Saunders, J.A.; Hofstra, A.H.; Goldfarb, R.J.; Reed, M.H. (2014). Geochemistry of Hydrothermal Gold Deposits. In: K.K. Turekian, H.D. Holland (eds.). Treatise on Geochemistry (pp. 383-424). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01117-7
  63. Serna-Peña, C.A. (2020). Geocronología y Análisis Isotópico de las Mineralizaciones Auríferas Asociadas a la Veta de la Mina La Aurora en la Parte Norte del Distrito Minero Zaragoza-Segovia-Remedios (DMZSR), Antioquia-Colombia. Tesis de maestría, Universidad de Caldas, Manizales.
  64. Seward, T.M.; Williams-Jones, A.; Migdisov, A. (2014). The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. In: K.K. Turekian, H.D. Holland (eds.) Treatise on Geochemistry (pp. 29-57). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01102-5
  65. Shaw, R.P. (2000). Gold mineralization in the Northern Andes - Magmatic setting vs metallogeny. International Mining Congress XI. Bogotá.
  66. Shaw, R.P.; Leal-Mejía, H.; Melgarejo i Draper, J.C. (2019). Phanerozoic Metallogeny in the Colombian Andes: A Tectono - Magmatic Analysis in Space and Time. Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, 411-549. https://doi.org/10.1007/978-3-319-76132-9_6
  67. Shenberger, D.M.; Barnes, H.L. (1989). Solubility of gold in aqueous sulfide solutions from 150 to 350°C. Geochimica et Cosmochimica Acta, 53(2), 269-278. https://doi.org/10.1016/0016-7037(89)90379-7
  68. Shepherd, T.; Rankin, A.; Alderton, D. (1985). A Practical Guide to Fluid Inclusion Studies. Mineralogical Magazine. http://doi.org/10.1180/minmag.1986.050.356.32
  69. Sillitoe, R.H. (2008). Major Gold Deposits and Belts of the North and South American Cordillera: Distribution, Tectonomagmatic Settings, and Metallogenic Considerations. Economic Geology, 103(4), 663-687. https://doi.org/10.2113/gsecongeo.103.4.663
  70. Spikings, R.; Cochrane, R.; Villagomez, D.; Van der Lelij, R.; Vallejo, C.; Winkler, W.; Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma). Gondwana Research, 27(1), 95-139. https://doi.org/10.1016/j.gr.2014.06.004
  71. Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. (2002). Dynamic recrystallization of quartz: correlation between natural and experimental conditions. Geological Society, London, Special Publications, 200(1), 171-190. https://doi.org/10.1144/GSL.SP.2001.200.01.11
  72. Varona-Bravo, D.; Naranjo-Sierra, E.; Toro, L.M. (2016). Características geoquímicas y petrográficas del stock El Carmen en el distrito minero El Bagre. Operadora Minera S.A.S.
  73. Velasco, F. (2004). Introducción al estudio de las inclusiones fluidas. XXIII Concurso Latinoamericano de Metalogenia. Mendoza, Argentina.
  74. Whitney, D.L.; Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. https://doi.org/10.2138/am.2010.3371
  75. Zapata-Cardona, E.; Hernández-González, J.S.; Quiceno-Colorado, J.A.; Ruiz-Jiménez, E.C.; Moreno-Sánchez, M.; Naranjo-Sierra, E.; Toro-Toro, L.M.; Rincón-Alape, J. (2023). Petrogenesis and tectonic implications of the carboniferous El Carmen Pluton, central Colombian Andes: insights from whole-rock and mineral geochemistry, in situ zircon Lu–Hf isotopes and U–Pb geochronology. International Geology Review. https://doi.org/10.1080/00206814.2023.2286481