Química mineral de biotitas en neises de la Suite Metamórfica Rio Urubú aflorantes en la Serra Repartimento, Dominio Guiana Central en el Cratón Amazónico, Brasil: implicaciones petrogenéticas

Resumen

Ortoneises del basamento Paleoproteorozoico, de composición granítica de la Suite Metamórfica Rio Urubú (SMRU), relacionados a el evento pos-transamazónico son de amplia distribución en el Dominio Guiana Central (DGC) en el Cratón Amazónico, noreste de Brasil. En este estudio, fue estudiada la petrografía, mineralogía y química de biotitas en neises de biotitahornblenda pertenecientes a la SMRU. También fueron determinadas las condiciones de formación de estas biotitas y discutidas la importancia de estos minerales en términos petrogenéticos. Mediante los resultados de petrografía y de química mineral fueron clasificadas las biotitas en dos grupos distintos: 1) biotitas primarias clasificadas como Bt-IA, menos deformadas, de aspecto ígneo preservado y sin mayor orientación mineral y 2) biotitas primarias con tendencia a biotitas reequilibradas, con evidencia de deformación leve a moderada (Bt-IB), marcando la foliación de la roca y la estructura neísica, y siendo consistentes con los procesos tectono-metamórficos asociados a zonas de cizallamiento que afectaron el DGC. Los datos de microsonda electrónica muestran que los contenidos totales de Mg en biotitas menos deformadas (Bt-IA) son más altos, siendo clasificadas como biotitas
magnesianas, mientras que las biotitas deformadas (Bt-IB) presentan contenidos mayores en Fe y siendo clasificadas como biotitas ferríreras. Resultados para biotitas estrictamente primarias indican que las rocas de la SMRU son asociadas a granitos provenientes de magmas tipo-I y afinidad geoquímica calco-alcalina, con temperaturas (T) de cristalizaron para estas biotitas entre 720ºC – 760ºC, con condiciones de fugacidad de oxígeno (fO2) de -12,71 y -13,66 y razones de Fe/ (Fe+Mg) ≥ 0,50, mostrando una cristalización para estas rocas en el campo NNO, sugiriendo condiciones reductoras para el magma parental y también indicando una fuente típicamente de corteza para los magmas que dieron origen a esos granitos. 

Palabras clave: Suite Metamórfica Rio Urubú, Química mineral, Biotita, Fugacidad de oxígeno, Magma parental

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Carlos Andrés Ballesteros-Camaro, Universidade Federal do Amazonas

Programa de Pós-graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brasil.

Johanna Ríos-Guerrero, Universidade Federal do Amazonas

Programa de Pós-graduação em Geociências, Universidade Federal do Amazonas, Manaus, Brasil.

Citas

Abdel-Rahman, A.M. (1994). Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35(2), 525-541. doi: 10.1093/petrology/35.2.525.

Albuquerque, C.A.R. (1973). Geochemistry of biotites from granitic rocks, Northern Portugal. Geochimica et Cosmochimica Acta, 37(7), 1779-1802. doi: 10.1016/0016-7037(73)90163-4.

Almeida, F.F.M. de. (1978). A evolução dos crátons Amazônico e do São Francisco, comparada com a de seus homólogos do Hemisfério Norte. Congresso Brasileiro de Geologia, Vol. 6, Recife, Brasil.

Almeida, M.E. (2006). Evolução geológica da porção centro-sul do Escudo das Guianas com base no estudo geoquímico, geocronológico e isotópico dos granitóides paleoproterozóicos do sudeste de Roraima, Brasil. Tese de Doutorado. Centro de Geociências, Universidade Federal do Pará, Belém, Brasil.

Almeida, M.E., Ferreira, A.L, and Pinheiro, S.S. (2003). Associações graníticas do oeste do estado de Roraima, Domínio Parima, Escudo das Guianas, Brasil. Géologie de la France, 2-3-4, 134-159.

Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwartzwald (Germany). Lithos, 50(1-3), 51-73.
doi: 10.1016/S0024-4937(99)00052-3.

Ballesteros-Camaro, C.A. (2017). Geologia e gênese das ocorrências de Ti, Nb e ETR’s na Serra Repartimento, Roraima. Tese de Mestrado, Universidade Federal do Amazonas, Brasil.

Barbarin, B. (1990). Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal, 25(3-4), 227-238. doi: 10.1002/gj.3350250306.

Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605-626. doi: 10.1016/S0024-4937(98)00085-1.

Barriére, M., and Cotton, J. (1979). Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contributions to Mineralogy and Petrology, 70(2), 183-192. doi: 10.1007/BF00374447.

Beane, R.E. (1974). Biotite stability in the porphyry copper environment. Economic Geology, 69(2), 241-256.

Broska, I. (2003). REE accessory minerals in the felsic silicic rocks of the west-carpathians: their distribution, composition and stability. Acta mineralogica-petrographica, Abstract Series 1, 15.

Burkhard, D.J.M. (1993). Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. Geologie en Mijnbouw, 71(4), 337-349.

Chappell, B.W., and White, A.J.R. (1974). Two contrasting granite types. Pacific Geology, 8, 173-174.

Costa, U.A.P, Dantona, R.J.G., Neves, M.P., Splendor, F., Da Silva, M.B., and Abram, M.S. (2011). Petrografia de rochas anortosíticas do município de Iracema, Estado de Roraima. SBG, 12º Simpósio de Geologia da Amazônia. Boa Vista, Roraima, Brasil. Anais.

CPRM. (1999). Roraima Central, Folhas NA.20-X-Be NA.20-X-D (integrais) e folhas NA.20-XA, NA.20-X-C, NA.21-V-A e NA.21-V-C (parciais). Escala 1:500.000. Brasília. Serviço Geológico do Brasil, 166 p. CD-ROM.

Deer, W.A., Howie, R.A., and Zussman, J. (1966). An introduction to the rock-forming minerals. London: Longman.

Deer, W.A., Howie, R.A., and Zussman, J. (1997). RockForming Minerals: Single-chain silicates. London: Longman.

Dodge, F.C.W., and Moore, J.G. (1968). Occurrence and composition of biotites from the cartridge pass pluton of the Sierra Nevada Batholith, California. US Geological. Survey Profesional Paper, 600(B), 6-10.

Dymek, R.F. (1983). Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. American Mineralogist, 68(9-10), 880-899.

Figueiredo, R.F. (2016). Contexto tectônico do complexo alcalino Apiaú-Roraima: aerogeofísica, petrologia e geocronologia U-Pb. Tese de Mestrado, Instituto de Geociências, Universidade Estadual de Campinas, Brasil.

Figueiredo, R.F., and Santos, T.J.S. (2015). Integração de dados aerogeofísicos e geológicos do Complexo Alcalino Apiaú, próximo a região de Campos, Novos – Roraima. SBG, 14º Simpósio de Geologia da Amazônia. Marabá, Anais.

Foster, M.D. (1960). Interpretation of the Composition of Trioctahedral Micas. U.S Geological Survey Professional Paper, 354(B): 1-49.

Fraga, L.M.B. (1999). Geologia Estrutural. In: Programa de Levantamento Geológicos Básicos do Brasil. Roraima Central, Folhas NA.20-X-B e NA.20-X-D (inteiras), NA.20-X-A, NA.20-X-C, NA.21-V-A e NA.21-V-C (parciais). Escala 1:500.000. Estado do Amazonas, Brasília: CPRM, 1999. Relatório final, cap. 4, p. 117-128.

Fraga, L.M.B. (2000). Suíte Metamórfica de Rio Urubu. In: CPRM, Programa Levantamentos Geológicos Básicos – PLGB. Roraima Central, Folhas NA.20-X e NA.21-V, Estado de Roraima, escala 1:500.000. Brasília/SUREGMA, pp. 127-177. 1 CD-ROM.

Fraga, L.M.B. (2002). A associação AnortositoMangerito Granito Rapakivi (AMG) do Cinturão Guiana Central, Roraima, e suas encaixantes paleoproterozóicas: Evolução Estrutural, Geocronologia e Petrologia. Tese de doutorado, Universidade Federal do Pará, Brazil.

Fraga, L.M.B., Almeida, M.E., and Macambira, M.J.B. (1997a). First lead-lead zircon ages of charnockitic rocks from Central Guiana Belt (CGB) in the state of Roraima, Brazil. 1st South American Symposium on Isotope Geology, Campos do Jordão, São Paulo, Brasil.

Fraga, L.M.B., Araújo, R.V. de., and Duarte, B.P. (1997b). Igneous charnockitic rocks of the Kanuku Complex and Serra da Prata Suite in the Central Guiana Belt (CGB), Roraima State, Brazil. International Symposium on Granites and Associated Rocks, Salvador.

Fraga, L.M.B., Dall’agnol, R., Costa, J.B.S., and Macambira, M.J.B. (2009a). The mesoproterozoic mucajaí anorthosite–mangerite–rapakivi granite complex, Amazonian craton, Brazil. The Canadian Mineralogist, 47(6), 1469-1492.

Fraga, L.M.B., Macambira, M.J.B., Dall’agnol, R., and Costa, J.B.S. (2009b). 1.94 - 1.93 Ga charnockitic magmatism from the central part of the Guyana Shield, Roraima, Brazil: Single-zircon evaporation data and tectonic implications. Journal of South American Earth Sciences, 27(4), 247-257. doi:10.1016/j.jsames.2009.02.007.

Fraga, L.M.B., Nunes, N.S.V., and Riker S.R.L. (1994). Contribuição à Geologia da região do Rio Urubu: Um segmento do Cinturão de Cisalhamento Guiana Central. Congresso Brasileiro de Geologia, Vol. 38, Anais 2, Camboriú, Brasil.

Gaudette, H.E., Olszewski, W.J., and Santos, J.O.S.(1996). Geochronology of Precambrian rocks from the northern part of Guiana Shield, State of Roraima, Brazil. Journal of South American Earth Sciences, 9(3-4), 183-195. doi: 10.1016/0895-9811(96)00005-3.

Harrison, T.N. (1990). Chemical variation in micas from the Cairngorm pluton, Scotland. Mineralogical Magazine, 54(376), 355-366.

Hecht, L. (1994). The Chemical composition of biotite as an indicator of magmatic fractionation and metasomatism in Sn-specialised granites of the Fichtelgebirge (NW Bohemian Massif, Germany). In: R. Seltmann, H. Kämpf, P. Möller. Metallogeny of collisional orogens (pp. 295-300). Prague: Czech Geological Survey.

Heinonen, A., Fraga, L.M., Rämö, T., Dall’Agnol, R., Mänttäri, I., and Andersen, T. (2012). Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton - geochemical, U-Pb geochronological, and Nd-Hf-O isotopic constraints. Lithos, 151, 17-34. doi: 10.1016/j.lithos.2011.07.016.

Henry, D.J., Guidotti, C.V., and Thomson, J.A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3), 316-328. doi:10.2138/am.2005.1498.

Ishihara, S. (1977). The magnetite-series and ilmeniteseries granitic rocks. Mining Geology, 27, 293-305.

Jacobs, D.C., and Parry, W.T. (1979). Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Economic Geology, 74(4), 860-887.

Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W. (2002). Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos, 63(3-4), 165-187.

Kretz, R. (1983). Symbols of rock-forming minerals. American Mineralogist, 68(1-2), 277-279.

Lalonde, A.E., and Bernard, P. (1993). Composition and color of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, Northwest Territories. Canadian Mineralogist, 31(1), 203-217.

Masoudi, F., and Jamshidi-Badr, M. (2008). Biotite and hornblende composition used to investigate the nature and thermobarometry of Pichagchi pluton, northwest Sanandaj-Sirjan metamorphic Belt, Iran. Journal of Sciences, Islamic Republic of Iran, 19(4), 329-338.

Mueller, R.F. (1972). Stability of biotite: A discussion. American Mineralogist, 57(1-2), 300-316.

Nachit, H., Ibhi, A., Abia, E.H., and Ohoud, M.B. (2005). Discrimination between primary magmatic biotites, reequilibrated and neoformed biotites. Comptes Rendus Geoscience, 337(16), 1415-1420.
doi: 10.1016/j.crte.2005.09.002.

Nachit, H., Razafimahefa, N., Stussi, J.M., and Carron, J.P. (1985). Composition chimique des biotites et typologie magmatique des granitoides. Comptes Rendus de l’Académie des Sciences, 301(11), 813-818

Noyes, H.J., Wones, D.R., and Frey, F.A. (1983). A tale of two plutons: petrographic and mineralogic constraints on the petrogenesis of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California. The Journal of Geology, 91(4), 353-378.

Petro, W.L., Vogel, T.A., and Wilband, J.T. (1979). Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries. Chemical Geology, 26(3-4), 217- 235.

Reis, N.J., Faria, M.S.G., Almeida, M.E., and Oliveira, M.A. (2004). Folhas NA.20-Boa Vista e NB.20-Roraima. In: C. Schobbenhaus, J.H. Gonçalves, J.O.S. Santos, M.B. Abram, R. Leão Neto, G.M.M. Matos, R.M. Vidotti, M.A.B., Ramos, J.D.A. Jesus (eds.). Carta geológica do Brasil ao milionésimo: Sistema de Informações Geográficas - SIG. Brasilia: Programa Geologia do Brasil. CPRM, CD-ROM.

Roberts, M.P., and Clemens, J.D. (1993). Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21(9), 825-828. doi:10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2.

Rosa-Costa, L.T. (2006). Geocronologia 207Pb/206Pb, Sm-Nd, U-Th-Pb E 40Ar-39Ar do segmento Sudeste do escudo das Guianas: Evolução crustal e termocronologia do evento transamazônico. Tese de Doutoramento, Geoquímica e Petrologia, Universidade Federal do Pará, Belém, Brasil.

Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J., and Fletcher, I.R. (2000). A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology. Gondwana Research, 3(4), 453-488. doi: 10.1016/S1342-937X(05)70755-3.

Shabani, A.A.T., Lalonde, A.E., and Whalen, J.B.(2003). Composition of biotite from granitic rocks of the Canadian Appalachian Orogen: A potential tectonomagmatic indicator?. The Canadian Mineralogist, 41(6), 1381-1396.

Solie, D.N., and Su, S.C. (1987). An occurrence of Ba-rich micas from the Alaska Range. American Mineralogist, 72(9-10), 995-999.

Speer, J.A. (1984). Micas in igneous rocks. In: S.W. Bailey (ed.). Micas (pp. 299-356). Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, Madison, Wisconsin, USA.

Speer, J.A. (1987). Evolution of magmatic AFM mineral assemblages in granitoid rocks: The hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina. American Mineralogist, 72(9-10), 863-878.

Stussi, J.M., and Cuney, M. (1996). Nature of biotites from alkaline, calc-alkaline and peraluminuos magmas by Abdel-Fattah M. Abdel-Haman: A comment. Journal of Petrology, 37(5), 1025-1029.

Tarazona, C.A. (2015). Análise das petrotramas das rochas charnockíticas da Serra da Prata, Mucajaí/RR. Tese de Mestrado, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Brasil.

Tassinari, C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., and Lafon, J.M. (2000). The Amazonian craton. In: U.G. Cordani, E.J. Milani, A. Thomaz Filho, D.A. Campos (eds.). Tectonic evolution of South America (pp. 41-96). Rio de Janeiro.

Tassinari, C.C.G., and Macambira, M.J.B. (2004). A evolução tectônica do Cráton Amazônico. In: V. Mantesso-Neto, A. Bartorelli, C. Dal Ré Carneiro, B.B. Brito-Neves (eds.). Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida (pp. pp. 471-485). São Paulo: Beca.

White, A.J.R. (1979). Sources of granite magmas. Geological Society of America, Abstracts with Programs, 11(7), 539. White, A.J.R., and Chappell, B.W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In: J.A. Roddick (ed.). Circum-Pacific Plutonic Terranes (pp. 21-34). Vol. 159. Boulder: Geological Society of America.

Wones, D.R. (1989). Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74(7-8), 744-749.

Wones, D.R., and Eugster, H.P. (1965). Stability of biotite: experiment, theory, and application. American Mineralogist, 50(9), 1228-1272.

Yavuz, F. (2003). Evaluating micas in petrologic and metallogenic aspect: I–definitions and structure of the computer program MICA+. Computer and Geosciences, 29(10), 1203-1213. doi: 10.1016/S0098-3004(03)00142-0.

Yavuz, F., Gültekin, A.H., Örgün, Y., Çelik, N., Karakaya, M.Ç., and Sasmaz, A. (2002). Mineral chemistry of barium- and titanium-bearing biotites in calc-alkaline volcanic rocks from the Mezitler area (Balιkesir Dursunbey), Western Turkey. Geochemical Journal, 36, 563-580.

Zhou, Z.X. (1986). The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrologica Sinica, 2(2), 59-70.
Publicado
2019-01-08