Influencia de la actividad tectónica y volcánica reciente en la dinámica fluvial del río Anaime (Cajamarca, Cordillera Central de Colombia)
Publicado 2019-09-30
Palabras clave
- geomorfología tectónica,
- Falla de Palestina,
- Falla de Ibagué,
- Volcán Cerro Machín,
- evolución del paisaje
- fallas activas ...Más
Cómo citar
Altmetrics
Resumen
El valle del río Anaime, localizado en la parte central de la Cordillera Central, se encuentra en una zona con influencia tectónica importante por estructuras regionales que hacen parte de los Sistemas de Fallas de Palestina e Ibagué. Además de lo anterior, esta zona ha estado bajo influencia de eventos volcánicos regionales como producto de la actividad reciente durante los últimos 5000 años del Volcán Cerro Machín. En este trabajo se presenta un análisis geomorfológico cuantitativo a partir del uso de diferentes índices geomorfológicos tales como la curva e integral hipsométrica, el índice de forma de la cuenca, el factor de asimetría, la relación ancho-altura del valle, perfiles longitudinales normalizados y el índice de extensión pendiente-relativa con el objetivo de analizar la influencia de la tectónica y la actividad volcánica en la evolución reciente del paisaje en el río Anaime. Los análisis geomorfológicos muestran que la evolución reciente del paisaje a lo largo de la parte alta del valle del río Anaime ha estado controlada por caídas locales en el nivel base inducidas por actividad tectónica reciente de la Falla de Palestina y con menor influencia por la Falla de Ibagué. La presencia de múltiples knickpoints móviles a lo largo de algunos tributarios del río Anaime y su correlación positiva con las estructuras asociadas a la Falla de Palestina permiten suponer que esta estructura ha estado activa. Por otro lado, la actividad Holocena del Volcán Cerro Machín ha inducido ajustes en el paisaje y la red de drenaje con el objetivo de compensar el gran volumen de material piroclástico depositado sobre el valle del río Anaime, anomalías que han perdurado en escalas de tiempo de entre 102 a 103 años y que pueden ser analizadas con la curva hipsométrica y los perfiles longitudinales normalizados de algunas quebradas tributarias al río Anaime.
Descargas
Referencias
Andreani, L., Stanek, K.P., Gloaguen, R., Krentz, O., and Domínguez-González, L. (2014). DEM-based analysis of interactions between tectonics and landscapes in the ore mountains and eger rift (East Germany and NW Czech Republic). Remote Sensing, 6(9), 7971-8001. doi: 10.3390/rs6097971.
Azañón, J.M., Galve, J.P., Pérez-Peña, J.V., Giaconia, F., Carvajal, R., Booth-Rea, G., Jabaloy, A., Vázquez, M., Azor, A., and Roldán, F.J. (2015). Relief and drainage evolution during the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift?. Tectonophysics, 663, 19-32. doi: 10.1016/j.tecto.2015.06.015.
Babault, J., Teixell, A., Struth, L., Van Den Driessche, J., Arboleya, M.L., and Tesón, E. (2013). Shortening, structural relief and drainage evolution in inverted rifts: insights from the Atlas Mountains, the Eastern Cordillera of Colombia and the Pyrenees. Geological Society, London, Special Publications, 377(1), 141-158. doi: 10.1144/SP377.14.
Bishop, P., Hoey, T.B., Jansen, J.D., and Lexartza-Artza, I. (2005). Knickpoint recession rate and catchment area: The case of uplifted rivers in Eastern Scotland. Earth Surface Processes and Landforms, 30(6), 767-778. doi: 10.1002/esp.1191.
Bishop, M.P., James, L., Shroder, J., and Walsh, J. (2012). Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology, 137(1), 5-26. doi: 10.1016/j.geomorph.2011.06.027.
Blanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C., and Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852-1872. doi: 10.1080/00206814.2014.963710.
Bull, W.B. (2007). Tectonic geomorphology of mountains: A new approach to paleoseismology. Singapore: Blackwell Publishing.
Bull, W., and McFadden, L.D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. In: D.O. Doehering (ed.). Geomorphology in Arid Regions Proceedings at the Eighth Annual Geomorphology Symposium State University of New York (pp. 115-138). Binghamton: George Allen & Unwin Publishing.
Bustos, X., Bermúdez, M., Toro, G., Bernet, M., Rojas, O., y Marín, M. (2013). Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia. TERRA, 29(46), 43-67.
Calzolari, G., Della Seta, M., Rossetti, F., Nozaem, R., Vignaroli, G., Cosentino, D., and Faccenna, C. (2016). Geomorphic signal of active faulting at the northern edge of Lut Block: Insights on the kinematic scenario of Central Iran. Tectonics, 35(1), 76-102. doi: 10.1002/2015TC003869.
Cannon, P.J. (1976). Generation of explicit parameters for a quantitative geomorphic study of the Mill creek drainage basin. Oklahoma Geology Notes, 36(1), 3-16.
Cepeda, H., Murcia, L., Monsalve, M.L., Méndez, R., y Nuñez, A. (1996). Volcán Cerro Machín, Departamento del Tolima, Colombia: pasado, presente y futuro. INGEOMINAS, Popayán, Colombia.
Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., and Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1), 1-21. doi: 10.1029/2002TC001402.
Cortés, G.P. (2001). Estudio geológico de los depósitos de lahar asociados a la actividad eruptiva del Volcán Cerro Machín. Reporte interno, INGEOMINAS, Manizales, Colombia.
Crosby, B.T., and Whipple, K.X. (2006). Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology, 82(1-2), 16-38. doi: 10.1016/j.geomorph.2005.08.023.
Cuéllar-Cárdenas, M.A., López-Isaza, J.A., Carrillo-Lombana, E.J., Ibáñez-Almeida, D.G., Sandoval-Ramírez, J.H., y Osorio-Naranjo, J.A. (2014). Control de la actividad tectónica sobre los procesos de erosión remontante: el caso de la cuenca del río Combeima, Cordillera Central, Colombia. Boletín de Geología, 36(1), 37-56.
Demoulin, A. (1998). Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology, 24(2-3), 189-208. doi: 10.1016/S0169-555X(98)00016-6.
Diederix, H., Audemard, F., Osorio, J., Montes, N., Velandia, F., y Romero, J. (2006). Modelado morfotectónico de la Falla transcurrente de Ibagué, Colombia. Revista de La Asociación Geológica Argentina, 61(4), 492-503.
El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., and Keller, E.A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1-2), 150-173. doi: 10.1016/j.geomorph.2007.08.004.
Etchebehere, M.L., Saad, A.R., Fulfaro, V.J., and de Jesus-Perinotto, J. (2004). Aplicação do índice “Relaçáo Declividade-Extensão - RDE”na bacia do Rio do Peixe (SP) para detecção de deformações neotectônicas. Geologia USP – Serie Cientifica, 4(2), 43-56. doi: 10.5327/S1519-874X2004000200004.
Etchebehere, M.L., Saad, A.R., Santoni, G., Casado, F., and Fulfaro, V.J. (2007). Detecção de prováveis deformações neotectônicas no vale do Rio do Peixe, região ocidental paulista, mediante aplicação de índices RDE (Relação Declividade-Extensão) em segmentos de drenagem. Geociências, 25(3), 271-287.
Feininger, T. (1970). The Palestina Fault, Colombia. Geological Society of America Bulletin, 81, 1201-1216. doi: 10.1130/0016-7606(1970)81[1201:TPFC]2.0.CO;2.
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J.M., Azañón, J.M., Pérez-Peña, J.V., Pérez-Romero, J., and Villegas, I. (2012). Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain). Geomorphology, 145-146, 90-106. doi: 10.1016/j.geomorph.2011.12.043.
Gómez, J., Montes, N., Nivia, A., y Diederix, H. (2015). Mapa Geológico de Colombia, escala 1:1’000.000. Servicio Geológico Colombiano, Bogotá, Colombia.
Gran, K.B., and Montgomery, D.R. (2005). Spatial and temporal patterns in fluvial recovery following volcanic eruptions: channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. GSA Bulletin, 117(1-2), 195-211. doi: 10.1130/B25528.1.
Gran, K.B., Montgomery, D.R., and Halbur, J.C. (2011). Long-term elevated post-eruption sedimentation at Mount Pinatubo, Philippines. Geology, 39(4), 367-370. doi: 10.1130/G31682.1.
Grohmann, C.H., Smith, M.J., and Riccomini, C. (2011). Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing, 49(4), 1200-1213. doi: 10.1109/TGRS.2010.2053546.
Hack, J.T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1(4), 421-429.
Howard, A.D., Dietrich, W.E., and Seidl, M.A. (1994). Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research: Solid Earth, 99(B7), 13971-13986. doi: 10.1029/94JB00744.
INGEOMINAS. (2002). Evaluación de la amenaza volcánica potencial del Cerro Machín (Departamento del Tolima, Colombia). INGEOMINAS.
Keller, E., and Pinter, N. (2002). Active Tectonics: Earthquakes, uplift and landscape. 2nd ed. Pearson Education.
Kirby, E., and Whipple, K.X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54-75. doi: 10.1016/j.jsg.2012.07.009.
Koukouvelas, I.K., Zygouri, V., Nikolakopoulos, K., and Verroios, S. (2018). Treatise on the tectonic geomorphology of active faults: The significance of using a universal digital elevation model. Journal of Structural Geology, 16, 241-252. doi: 10.1016/j.jsg.2018.06.007.
Laeger, K., Halama, R., Hansteen, T., Savov, I.P., Murcia, H.F., Cortés, G.P., and Garbe-Schönberg, D. (2013). Crystallization conditions and petrogenesis of the lava dome from the ~900 years BP eruption of Cerro Machín Volcano, Colombia. Journal of South American Earth Sciences, 48, 193-208. doi: 10.1016/j.jsames.2013.09.009.
Londoño, J.M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156-168. doi: 10.1016/j.jvolgeores.2016.06.003.
Major, J.J., Pierson, T.C., Dinehart, R.L., and Costa, J.E. (2000). Sediment yield following severe volcanic disturbance-a two-decade perspective from Mount St. Helens. Geology, 28(9), 819-822. doi: 10.1130/0091-7613(2000)28<819:SYFSVD>2.0.CO;2.
Matoš, B., Pérez-Peña, J.V., and Tomljenović, B. (2016). Landscape response to recent tectonic deformation in the SW Pannonian Basin: Evidence from DEM-based morphometric analysis of the Bilogora Mt. area, NE Croatia. Geomorphology, 263, 132-155. doi: 10.1016/j.geomorph.2016.03.020.
Méndez, R. (2002). Catálogo de las Unidades Litoestratigráficas de Colombia: Formación Machín, Cordillera Central, Departamento del Tolima. INGEOMINAS, Bogotá, Colombia.
Menéndez, I., Silva, P.G., Martín-Betancor, M., Pérez-Torrado, F.J., Guillou, H., and Scaillet, S. (2008). Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain). Geomorphology, 102(1), 189-203. doi: 10.1016/j.geomorph.2007.06.022.
Mikesell, L.R., Weissmann, G.S., and Karachewski, J.A. (2010). Stream capture and piracy recorded by provenance in fluvial fan strata. Geomorphology, 115(3-4), 267-277. doi: 10.1016/j.geomorph.2009.04.025.
Molin, P., Fubelli, G., Nocentini, M., Sperini, S., Ignat, P., Grecu, F., and Dramis, F. (2012). Interaction of mantle dynamics, crustal tectonics, and surface processes in the topography of the Romanian Carpathians: A geomorphological approach. Global and Planetary Change, 90-91, 58-72. doi: 10.1016/j.gloplacha.2011.05.005.
Molin, P., Pazzaglia, F., and Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, southern Italy. American Journal of Science, 304(7), 559-589. doi: 10.2475/ajs.304.7.559.
Montes, N., Velandia, F., Osorio, J., Audemard, F., y Diederix, H. (2005). Interpretación morfotectónica de la Falla de Ibagué para su caracterización paleosismológica. Boletín de Geología, 27(1), 95-114.
Murcia, H.F., Borrero, C.A., Pardo, N., Alvarado, G.E., Arnosio, M., y Scolamacchia, T. (2013). Depósitos volcaniclásticos: términos y conceptos para una clasificación en español. Revista Geológica de América Central, 48, 15-39.
Murcia, H.F., Hurtado, B.O., Cortés, G.P., Macías, J.L., and Cepeda, H. (2008). The ~ 2500 yr B.P. Chicoral non-cohesive debris flow from Cerro Machín Volcano, Colombia. Journal of Volcanology and Geothermal Research, 171(3-4), 201-214. doi: 10.1016/j.jvolgeores.2007.11.016.
Mutaquin, B.W., Lavigne, F., Sudrajat, Y., Handayani, L., Lahitte, P., Virmoux, C., Hiden, Hadmoko, D.S., Komorowski, J., Hananto, N.D., Wassmer, P., Hartono, and Boillot-Airaksinen, K. (2019). Landscape evolution on the eastern part of Lombok (Indonesia) related to the 1257 CE eruption of the Samalas Volcano. Geomorphology, 327, 338-350. doi: 10.1016/j.geomorph.2018.11.010.
Naranjo, A., Horner, J., Jahoda, R., Diamond, L.W., Castro, A., Uribe, A., Perez, C., Paz, H., Mejía, C., and Weil, J. (2018). La Colosa Au porphyry deposit, Colombia: Mineralization styles, structural controls, and age constraints. Economic Geology, 113(3), 553-578. doi: 10.5382/econgeo.2018.4562.
Osorio, J., Montes, N., Velandia, F., Acosta, J., Romero, J., Diederix, H., Audemard, F., y Núñez, A. (2008). Paleosismología de la Falla de Ibagué. INGEOMINAS, Publicaciones Geológicas Especiales, No. 29.
Pérez-Peña, J.V., Azor, A., Azañón, J.M., and Keller, E.A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1-2), 74-87. doi: 10.1016/j.geomorph.2010.02.020.
Pérez-Peña, J.V., Al-Awabdeh, M., Azañón, J.M., Galve, J.P., Booth-Rea, G., and Notti, D. (2017). SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Computers and Geosciences, 104, 135-150. doi: 10.1016/j.cageo.2016.08.008.
Perucca, L.P., Espejo, K., Angillieri, M.Y., Rothis, M., Tejada, F., and Vargas, M. (2018). Neotectonic controls and stream piracy on the evolution of a river catchment: a case study in the Agua de la Peña River basin, Western Pampean Ranges, Argentina. Journal of Iberian Geology, 44(2), 207-224. doi: 10.1007/s41513-018-0052-8.
Piedrahita, D.A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., y Gómez-Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología, 40(3), 29-48. doi: 10.18273/revbol.v40n3-2018002.
Pierson, T., and Major, J. (2014). Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins. Annual Review of Earth and Planetary Sciences, 42(1), 469-507. doi: 10.1146/annurev-earth-060313-054913.
Pike, R.J., and Wilson, S.E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. GSA Bulletin, 82(4), 1079-1084. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2.
Prince, P.S., Spotila, J.A., and Henika, W.S. (2011). Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology, 39(9), 823-826. doi: 10.1130/G32008.1.
Queiroz, G.L., Salamuni, E., and Nascimento, E.R. (2015). Knickpoint finder: A software tool that improves neotectonic analysis. Computers and Geosciences, 76, 80-87. doi: 10.1016/j.cageo.2014.11.004.
Ramírez-Herrera, M.T. (1998). Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic Belt. Earth Surface Processes and Landforms, 23(4), 317-332. doi: 10.1002/(SICI)1096-9837(199804)23:4<317::AIDESP845>3.0.CO;2-V.
Restrepo-Moreno, S.A., Foster, D.A., Stockli, D.F., and Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. doi: 10.1016/j.epsl.2008.09.037.
Ruszkiczay-Rüdiger, Z., Fodor, L., Horváth, E., and Telbisz, T. (2009). Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary. Geomorphology, 104(3-4), 203-217. doi: 10.1016/j.geomorph.2008.08.014.
Scotti, V.N., Molin, P., Faccenna, C., Soligo, M., and Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 206, 37-57. doi: 10.1016/j.geomorph.2013.09.017.
SGC. (2018). Zonificación de amenaza por movimientos en masa del Municipio de Cajamarca. Servicio Geológico Colombiano, Bogotá, Colombia.
Silva, P.G., Goy, J.L., Zazo, C., and Bardají, T. (2003). Faulth-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225. doi: 10.1016/S0169-555X(02)00215-5.
Strahler, A.N. (1952). Hypsometric (area-altitude) analysis of erosional topography. GSA Bulletin, 63(11), 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
Strobl, M., Hetzel, R., Ding, L., Zhang, L., and Hampel, A. (2010). Preservation of a largescale bedrock peneplain suggests long-term landscape stability in southern Tibet. Zeitschrift Für Geomorphologie, 54(4), 453-466. doi: 10.1127/0372-8854/2010/0054-0023.
Struth, L., Teixell, A., Owen, L.A., and Babault, J. (2017). Plateau reduction by drainage divide migration in the Eastern Cordillera of Colombia defined by morphometry and 10Be terrestrial cosmogenic nuclides. Earth Surface Processes and Landforms, 42(8), 1155-1170. doi: 10.1002/esp.4079.
Tesón, E., García, Y., Añez, M., Struth, L., Caballero, V., Babault, J., y Teixell, A. (2015). Capturas fluviales recientes de los ríos Chicamocha y Suárez: El origen de la Terraza de Bucaramanga y causas de la reorganización de la red de drenaje. XV Congreso Colombiano de Geología. Bucaramanga, Colombia.
Thouret, J.C., Cantagrel, J.M., Robin, C., Murcia, A., Salinas, R., and Cepeda, H. (1995). Quaternary eruptive history and hazard-zone model at Nevado del Tolima and Cerro Machin volcanoes, Colombia. Journal of Volcanology and Geothermal Research, 66(1-4), 397-426. doi: 10.1016/0377-0273(94)00073-P.
Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. doi: 10.1016/j.lithos.2011.05.003.
Whipple, K.X. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32(1), 151-185. doi: 10.1146/annurev.earth.32.101802.120356.
Whipple, K.X., DiBiase, R.A., and Crosby, B.T. (2013). Bedrock rivers. In: J.F. Shroder (ed.). Treatise on geomorphology (pp. 550-573). Vol. 9. Elsevier Ltd. doi: 10.1016/B978-0-12-374739-6.00254-2.
Wobus, C.W., Crosby, B.T., and Whipple, K.X. (2006a). Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. Journal of Geophysical Research: Earth Surface, 111(F2), 1-14. doi: 10.1029/2005JF000406.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D. (2006b). Tectonics from topography: Procedures, promise, and pitfalls. In: S.D. Willett, N. Hovius, M.T. Brandon, D.M. Fisher (eds.). Tectonics, climate, and landscape evolution (pp.55-74). Vol. 10. Geological Society of America. doi: 10.1130/2006.2398(04).
Zhang, H., Zhang, P., Kirby, E., Yin, J., Liu, C., and Yu, G. (2011). Along-strike topographic variation of the Longmen Shan and its significance for landscape evolution along the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40(4), 855-864. doi: 10.1016/j.jseaes.2010.05.015.