Vol. 42 No. 1 (2020): Boletín de Geología
Artículos científicos

Proposal for geological classification and nomenclature of soils: both genetic-descriptive and compositional-mineralogical

Luis Enrique Cruz-Guevara
Universidad Industrial de Santander
Luis Felipe Cruz-Ceballos
Universidad Industrial de Santander
Gladys Marcela Avendaño-Sánchez
Universidad Industrial de Santander
Mario García-González
Universidad Industrial de Santander

Published 2020-01-22

Keywords

  • Soil,
  • classification,
  • soil materials,
  • geological classification,
  • genetic classification,
  • compositional classification
  • ...More
    Less

How to Cite

Cruz-Guevara, L. E., Cruz-Ceballos, L. F., Avendaño-Sánchez, G. M., & García-González, M. (2020). Proposal for geological classification and nomenclature of soils: both genetic-descriptive and compositional-mineralogical. Boletín De Geología, 42(1), 81–97. https://doi.org/10.18273/revbol.v42n1-2020005

Altmetrics

Abstract

Numerous systems with detailed classification of soil are in existence. Most of them are based on a variety of complex criteria, such as material type and properties like the amount of organic material, presence of clay layers, and the presence of oxidation or reduction iron-rich horizons, as well as depositional characteristics, its landform morphology and depositional formation processes. Many of these have been developed for use in fields such as agronomy and geotechnics. This paper focuses on the classification of the soil by determining its materials, their origin and the geological processes that shape them, following these basic assumptions: (1) The soil initially comes from the weathering of a parent substrate that can be either sedimentary deposits (for example, alluvial or fluvial) or of any type of rock (igneous, metamorphic or sedimentary), (2) the parent substrate structure is composed by original sequential facies (e.g. foliation, igneous cumulates or stratigraphic intercalation of sedimentary layers), (3) the physical and chemical weathering and the biogenic activity and productivity processes that occur in the soil modify both the original structure and the constituents of the parental substrate, resulting in the formation of new materials, the conservation of others, and the overprint of the sequential facies of the soil (horizons A, B and C) developed on the original parental sequential facies, additionally (4) some materials will be lost from the system and others will be incorporated into it. Finally, a strictly compositional-mineralogical classification of soil is also proposed, which corresponds essentially to the main groups of minerals: silicates, carbonates, phosphates, oxides and hydroxides, sulfates, organic rich matter, nitrates, sulphides, borates, native elements and halides, named in sedimentology as monomaterials, plus the polymaterials or rock fragments (RF). This classification offers an advantage when examining materials that are not genetically linked to the parent substrates, making each soil profile unique, by highlighting the role played by the parental materials in this process. This classification is intended to complement, but not replace any existing soil classification

Downloads

Download data is not yet available.

References

Al-Amoundi, O.S.B., and Abduljauwad, S.N. (1995). Compressibility and collapse characteristics of arid saline sabkha soils. Engineering Geology, 39(3-4), 185-202. doi: 10.1016/0013-7952(95)00016-9.

Assereto, R.L., and Kendall, C.G. (1971). Megapolygons in Ladinian limestones of Triassic of Southern Alps: evidence of deformation by penecontemporaneous desiccation and cementation. Journal of Sedimentary Petrology, 41(3), 715-723.

ASTM D2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA, ASTM International. doi: 10.1520/D2487-06.

ASTM D3282-93(2004)e1. Standard Practice for Classification of Soils and Soil Aggregate Mixtures for Highway Construction Purposes. West Conshohocken, PA, ASTM International. doi: 10.1520/D3282-93R04E01 .

Avendaño-Sánchez, G.M., and Cruz-Ceballos, L.F. (2017). Geological classification of modern soils of regolith, proposal for new structure of classification and nomenclature. Thesis, Universidad Industrial de Santander, Colombia.

Baize, D., and Girard, M.C. (2008). Référentiel pédologique. Versailles: Association française pour l’étude du sol (Afes).

Beck, M.A., and Sanchez, P.A. (1994). Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult. Soil Science Society of America Journal, 58(5), 1424-1431. doi: 10.2136/sssaj1994.03615995005800050021x.

Bellamy, J. (1977). Subsurface expansion megapolygons in Upper Jurassic dolostone (Kimmerdge, UK). Journal of Sedimentary Petrology, 47(3), 973-978.

Benedict, J.B. (1979). Fossil ice-wedge polygons in the Colorado Front Range: origin and significance. GSA Bulletin, 90(2), 173-180. doi: 10.1130/0016-7606(1979)90<173:FIPITC>2.0.CO;2.

Birkeland, P.W. (1999). Soils and geomorphology. New York: Oxford University Press.

Boggs, S. (2006). Principles of sedimentology and stratigraphy. 4th edition. Upper Saddle River: Prentice Hall.

Bohra, A., Kotlia, B.S., Laskar, A.H., and Yadava, M.G. (2014). Evidence of Late Quaternary seismicity from Yunam Tso, Lahaul and Spiti, NW Himalaya, India. Journal of Earth System Science, 123(3), 603-616. doi: 10.1007/s12040-014-0415-2.

Bornemann, L., Herbst, M., Welp, G., Vereecken, H., and Amelung, W. (2011). Rock fragments control size and saturation of organic carbon pools in agricultural topsoil. Soil Science Society of America Journal, 75(5), 1898-1907. doi: 10.2136/sssaj2010.0454.

Bortoluzzi, E.C., Pérez, C., Ardisson, J., Tiecher, T., and Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196-204. doi: 10.1016/j.clay.2014.11.032.

Brantley, S.L., Goldhaber, M.B., and Ragnarsdottir, K.V. (2007). Crossing disciplines and scales to understand the critical zone. Elements, 3(5), 307-314. doi: 10.2113/gselements.3.5.307.

Bridges, E.R. (1990). Soil horizon designation. Technical paper 19. Wageningen: International Soil Reference and Information Center (ISRIC).

Buol, S.W., Hole, F.D., McCracken, R.J., and Southard, R.J. (1997). Soil genesis and classification. Ames: Iowa State University Press.

Carvalho-Filho, A., India, A., Fink, J., and Curi, N. (2015). Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil). Applied Clay Science, 118, 1-7. doi: 10.1016/j.clay.2015.08.037.

Casagrande, A. (1948). Classification and identification of soils. Transactions of the American Society of Civil Engineering, 113, 901-991.

Chesworth, W. (2007). Encyclopedia of soil science. Dordrecht: Springer.

Conte, E., Anghinoni, I., and Rheinheimer, D.S. (2002). Fósforo da biomassa microbiana e atividade de fosfatase ácida após aplicação de fosfato em solo no sistema plantio direto. Revista Brasileira de Ciência do Solo, 26(4), 925-930. doi: 10.1590/S0100-06832002000400009.

Cruz-Guevara, L.E., Cruz-Ceballos, L.F., Avendaño-Sánchez, G.M., and Villamizar-Cáceres, J.L. (2017). Geological soil or regolith classification, a proposal for a new classifying and naming structure of sedimentary deposits and rocks. XVI Congreso Colombiano de Geología, Santa Marta, Colombia.

Dana, E.S., and Ford, W.E. (1922). A text book of mineralogy, with an extended treatise on crystallography and physical mineralogy. New York: John Wiley and Sons.

Dana, E.S., and Hurlbut, C.S. (1959). Manual de mineralogía, tratado moderno para la enseñanza en universidades y escuelas especiales y para la guía de ingenieros de minas y geólogos. 2da edición. Barcelona: Editorial Reverté, S.A.

Do Campo, M., Nieto, F., Albanesi, G.L., Ortega, G., and Monaldi, C.R. (2017). Outlining the thermal posdepositional evolution of the Ordovician successions of northwestern Argentina by clay mineral analysis, chlorite geothermometry and Kübler index. Andean Geology, 44(2), 179-212. doi: 10.5027/andgeoV44n2-a04.

Dodd, R.J., and Sharpley, A.N. (2015). Recognizing the role of soil organic phosphorus in soil fertility and water quality. Resources, Conservation and Recycling, 105(Part B), 282-293. doi: 10.1016/j.resconrec.2015.10.001.

Dvorak, J., and Novak, L. (1994). Soil Conservation and Silviculture. Prague: Elsevier Science.

Dylik, J., and Maarleveld, G.C. (1967). Frost cracks, frost fissures and related. Polygons. Mededelingen van de Geologische Stichting Nieuwe Serie, 18, 7-21.

Eswaran, H., Rice, T., Ahrens, R., and Stewart, B. (2003). Soil Classification. A Global Desk Reference. Washington, DC: CRC Press.

Etayo-Serna, F., y Rodríguez, G. (1985). Edad de la Formación Los Santos. Publicaciones Geológicas Especiales del Ingeominas, 16, 351-336.

FAO. (2015a). Healthy soils are the basis for healthy food production. Food and Agriculture Organization of the United Nations.

FAO. (2015b). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Updated 2015. Roma: World soil resources reports, 106.

Fink, J.R., India, A., Bavaresco, J., Sánchez-Rodríguez, A., Barrón, V., Torrent, J., and Bayer, C. (2016). Diffusion and uptake of phosphorus, and root development of corn seedlings, in three contrasting subtropical soils under conventional tillage or no-tillage. Biology and Fertility of Soils, 52(2), 203-210. doi: 10.1007/s00374-015-1067-3.

Friedman, G.M. (1997). Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates and Evaporites, 12(1), 53-63.

Geological Survey of Western Australia. (2013). Revised classification system for regolith in Western Australia, and the recommended approach to regolith mapping. West Perth: Geological Survey of Western Australia.

Helvaci, C., and Alonso, R.N. (2000). Borate deposits of Turkey and Argentina; a summary and geological comparison. Turkish Journal of Earth Sciences, 9(1), 1-27.

Holloway, J.M., and Dahlgren, R.A. (2002). Nitrogen in rock: occurrences and biogeochemical implications. Global Biogeochemical Cycles, 16(4), 1-17. doi: 10.1029/2002GB001862.

Huang, P.T., Patel, M., Santagata, M.C., and Bobet, A. (2009). Classification of organic soils, Final Report. West Lafayette: Joint Transportation Research Program.

IDEAM (2017). Clasifiación Climática Caldas-Lang 2012. Consulted on 14 august of 2017. https://www.datos.gov.co/Ambiente-y-DesarrolloSostenible/Clasifiaci-n-Clim-tica-Caldas-Lang-2012/3akx-3ph5.

IUSS Working Group WRB (2015). World Reference Base for soil resources 2014, International soil classification system for naming soils and creating legends for soil maps. Rome: World Soil Resources Report.

Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O., and Schad, P. (2006). Guidelines for soil description. Roma: Food and agriculture organization of the United Nations.

Kämpf, N., and Schwertmann, U. (1982). The 5-M-NaOH concentration treatment for iron oxides in soils. Clays and Clay Minerals, 30(6), 401-408.

Kew, G., and Gilkes, R. (2006). Classification, strength and water retention characteristics of lateritic regolith. Geoderma, 136(1-2), 184-198. doi: 10.1016/j.geoderma.2006.03.025.

Kidwell, S.M., Fürsich, F., and Aigner, T. (1986). Conceptual framework for the analysis and classification of fossil concentrations. Palaios, 1(3), 228-238.

Ko, T.H. (2008). Removal of hydrogen sulfur from coal-derived gas by iron oxides in various oxisols. Environmental Engineering Science, 25(7), 969-973. doi: 10.1089/ees.2007.0133.

Lavaut, W. (2018). A geological classification for the rocks of weathering. Petroleum Science and Engineering, 2(1), 1-6. doi: 10.11648/j.pse.20180201.11.

Macar, P. (1948). Les pseudo-nodules du Famennien et leur origine. Annales de la Société Géologique de Belgique, 72, 47-74.

Martinazzo, R., Rheinheimer, D.S., Gatiboni, L.C., Brunetto, G., and Kaminski, J. (2007). Fósforo microbiano do solo sob sistema plantio direto em resposta à adição de fosfato solúvel. Revista Brasileira de Ciência do Solo, 31(3), 563-570. doi: 10.1590/S0100-06832007000300016.

Merrill, G.P. (1897). A treatise on rocks, rock-weathering, and soil. Washington: Macmillan & Co.

Middleton, G.V. (2003). Encyclopedia of sediments, and sedimentary rocks. Dordrecht: Springer.

Millot, G. (1964). Géologie des Argiles, altérations, sédimentologie, géochimie. Paris: Masson et Cie

Pariente, S., and Lavee, H. (2003). Soil organic matter and degradation. Soil conservation and protection for Europe, 83-88.

Patton, F.D. (1966). Multiple modes of shear failure in rock and related materials. Ph.D. Thesis, University of Illinois, USA.

Patton, F.D., and Deere, D.U. (1971). Significant geologic factor in rock slope stability. Symposium on the Theoretical Background to the Planning of Open Pit Mines with Special Reference to Slope Stability. South Africa.

Peryt, T.M. (1983). Coated Grains. Berlin: Springer-Verlag.

Retallack, G.J. (1977). Triassic palaeosols in the upper Narrabeen group of New South Wales. Part II: Classification and reconstruction. Journal of the Geological Society of Australia, 24(1-2), 19-35. doi: 10.1080/00167617708728964.

Robertson, P.K., and Cabal, K.L. (2015). Guide to Cone Penetration Testing for Geotechnical Engineering. Signal Hill: Gregg Drilling and Testing, Inc.

Schaefer, C.E.G.R., Fabris, J.D., and Ker, J.C. (2008). Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals, 43(1), 137-154.

Scott, K., and Pain, C. (2008). Regolith science. Collingwood: CSIRO Publishing.

Smith, B. (1916). Ball and pillow-form structures in sandstones. Geological Magazine, 3(4), 146-156. doi: 10.1017/S0016756800199637.

Soil Classification Working Group. (1998). The Canadian System of Soil Classification. 3rd ed. Ottawa: NRC Research Press.

Soil Survey Staff. (1999). Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Agricultural Handbook 436. Washington DC: Natural Resources Conservation Service, USDA.

Soil Survey Staff. (2014). Keys to soil taxonomy. 12th edition. Washington: U.S. Department of Agriculture, Natural Resources Conservation Service.

Taylor, G. (2006). Fundamentals of regolith geology. Regolith 2006 proceeding of the CRC LEME Regolith Symposium. Consolidation and dispersion of ideas. Hahndorf, South Australia.

Trescases, J.J. (1975). L’Évolution géochemique supergène des roches ultrabasiques en zone tropicale: Formation de gisements nickelifères de de Nouvelle-Calédonie. Strasbourg: Mémoires ORSTOM.

Tiessen, H., Stewart, J.W.B., and Cole, C.V. (1984). Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of American Journal, 48(4), 853-858. doi: 10.2136/sssaj1984.03615995004800040031x.

Trudinger, P.A. (1981). Origins of sulphide in sediments. BMR Journal of Australian Geology and Geophysics, 6(4), 279-285.

Udden, J.A. (1918). Fossil ice crystals: An instance of practical value of “pure science”. Bulletin of the University of Texas, 1821, 3-8.

Wager, L.R., Brown, G.M., and Wadsworth, W.J. (1960). Types of igneous cumulates. Journal of Petrology, 1(1), 73-85. doi: 10.1093/petrology/1.1.73.

Wang, X., Liu, F., Tan, W., Li, W., Feng, X., and Sparks, D. (2013). Characteristics of phosphate adsorption-desorption onto ferrihydrite: comparison with well-crystalline Fe (hydr) oxides. Soil Science, 178(1), 1-11. doi: 10.1097/SS.0b013e31828683f8.

Wilson, M.J. (1975). Chemical weathering of some primary rock-forming minerals. Soil Science, 119(5), 349-355.

Wilson, M.J. (2013). Sheet silicates, clay minerals. In: W.A. Deer, R.A. Howie, J. Zussman (Eds.). Rock-forming minerals. London: The Geological Society.