Columnar jointing structures in lavas from the Nevado del Ruiz Volcanic Complex (Colombia): Facies, dimensions and geometry
Published 2021-05-31
Keywords
- Columnar jointing,
- Cooling mechanisms,
- Polygonal shapes,
- Lava,
- Energy
How to Cite
Altmetrics
Abstract
Associated with the Nevado del Ruiz Volcanic Complex (NRVC), there are several lava flows with columnar jointing structures that were formed by the physical cooling regime. These joints, of interest to the volcanology and geoturism, specially for the Volcán del Ruiz Geopark, candidate to UNESCO recognition, not only because they have significance to the understanding of flow and cooling mechanisms which in turn have implications on the permeability to geothermal fluids, but also because they are attractive structures for geoturism around the world. In this work, the jointing facies in lavas from four sites along the road between Manizales and Murillo on the northeastern flank of NRVC are characterized. From each outcrop a description is presented in terms of the morphology, using aerial photographs and field observations, and by documenting the dimensions and geometries of joints and their identifiable minor structures. Also, the macroscopic and microscopic characteristics of rock samples from each site allowed the textural features and modal mineralogy to be established. The andesite composition of all samples is confirmed, with euhedral plagioclase (andesine and oligoclase) crystals of up to 4 mm in size. It was also determined that the columns have average dimensions of 1.3 m width, 3 m high, with striae separated by an average of 12.6 cm, and polygonal shapes with predominantly four sides. From these observed features it is concluded that these lavas underwent a relatively quick but nonetheless complex cooling process that involved a large amount of energy, including heat dissipation and deformational energy, and also that many primary features in the emplacements have most likely been affected by intense weathering and erosion.
Downloads
References
Calderón, C.E.; Flórez, D.F.; Sánchez, J.J. (2017). Mecanismos geofísicos de formación de diaclasas columnares en rocas volcánicas: Casos de estudio en Colombia. XVI Congreso Colombiano de Geología, Santa Marta, Colombia.
Ceballos-Hernández, J.A.; Martínez-Tabares, L.M.; Valencia-Ramírez, L.G.; Pulgarín- Alzate, B.A.; Correa-Tamayo, A.M.; Narváez-Marulanda, B.L. (2020). Geological evolution of the Nevado del Ruiz Volcanic Complex. In: J. Gómez, A.O. Pinilla-Pachon (eds). The Geology of Colombia (pp. 267-296). Volume 4. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.07
DeGraff, J.M.; Aydin, A. (1987). Surface morphology of columnar joints and its significance to mechanisms and direction of joint growth. GSA Bulletin, 99(5), 605-617. https://doi.org/10.1130/0016-7606(1987)99<605:SMOCJA>2.0.CO;2
Flórez, D.F. (2017). Descripción de rocas volcánicas con diaclasas columnares en varios sitios de Colombia. Trabajo de grado. Universidad Nacional de Colombia, Colombia.
Goehring, L.A.Z.; Morris, S.W. (2008). Scaling of columnar joints in basalt. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007JB005018
Grossenbacher, K.A.; McDuffie, S.M. (1995). Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. Journal of Volcanology and Geothermal Research, 69(1-2), 95-103. https://doi.org/10.1016/0377-0273(95)00032-1
Hetényi, G.; Taisne, B.; Garel, F.; Médard, E.; Bosshard, S.; Mattsson, H. (2012). Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology, 74(2), 457-482. https://doi.org/10.1007/s00445-011-0534-4
Jerram, D.; Petford, N. (2011). The field description of igneous rocks. Vol. 40. John Wiley & Sons.
Levin, R.I.; Rubin, D.S. (2004). Estadística para administración y economía. Pearson.
Li, Y.; Liu, J. (2020). Late Cenozoic columnar-jointed basaltic lavas in eastern and southeastern China: morphologies, structures, and formation mechanisms. Bulletin of Volcanology, 82(7). https://doi.org/10.1007/s00445-020-01397-1
Long, P.E.; Wood, B.J. (1986). Structures, textures and cooling histories of Columbia River basalt flows. GSA Bulletin, 97(9), 1144-1155. https://doi.org/10.1130/0016-7606(1986)97<1144:STACHO>2.0.CO;2
Martínez, L.M.; Valencia, L.G.; Ceballos, J.A.; Narváez, B.L.; Pulgarín, B.A.; Correa, A.M.; Pardo, N. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Informe final. Servicio Geológico Colombiano.
Müller, G. (1998). Experimental simulation of basalt columns. Journal of Volcanology and Geothermal Research, 86(1-4), 93-96. https://doi.org/10.1016/S0377-0273(98)00045-6
Murcia, H.F.; Borrero, C.A.; Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77-87. https://doi.org/10.1016/j.jvolgeores.2018.06.013
O’Reilly, J.P. (1879). Explanatory notes and discussion on the nature of the prismatic forms of a group of columnar basalts, Giant’s Causeway. Transactions of the Royal Irish Academy, 26, 641-728.
Phillips, J.C.; Humphreys, M.C.; Daniels, K.A.; Brown, R.J.; Witham, F. (2013). The formation of columnar joints produced by cooling in basalt at Staffa, Scotland. Bulletin of Volcanology, 75(6). https://doi.org/10.1007/s00445-013-0715-4
Pollard, D.D.; Aydin, A. (1988). Progress in understanding jointing over the past century. GSA Bulletin, 100(8), 1181-1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
Rayo, L. (2012). Evolución geoquímica y térmica del volcán Nevado del Ruiz, Colombia. Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia.
Saemundsson, K. (1970). Interglacial lava flows in the lowlands of Southern Iceland and the problem of two-tiered columnar jointing. Jokul, 20, 62-77.
Sánchez, E.; Osorio, M. (2008). Geología y petrogénesis de los prismas basálticos. Santa María Regla, Hidalgo. Revista Geociencia SGM, 2, 5-24.
Schmincke, H.U. (2004). Volcanism. Springer-Verlag.
Scrope, G.P. (1825). Considerations on volcanos. The probable causes of their phenomena, the laws which determine their march, the disposition of their products, and their connexion with the present state and past history of the globe; leading to the establishment of a new theory of Earth. Cambridge University Press.
Spry, A. (1962). The origin of columnar jointing, particularly in basalt flows. Journal of the Geological Society of Australia, 8(2), 191-216. https://doi.org/10.1080/14400956208527873
Streckeisen, A. (1979). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 7(7), 331-335. https://doi.org/10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2
Thouret, J.C. (1990). Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia. Journal of Volcanology and Geothermal Research, 41(1-4), 177-201. https://doi.org/10.1016/0377-0273(90)90088-W
Weinberger, R.; Burg, A. (2019). Reappraising columnar joints in different rock types and settings. Journal of Structural Geology, 125, 185-194. https://doi.org/10.1016/j.jsg.2018.04.015
Winter, J.D. (2014). Principles of Igneous and Metamorphic Petrology. 2nd Edition. Pearson Education Limited.
Wright, H.M.; Lesti, C.; Cas, R.A.; Porreca, M.; Viramonte, J.G.; Folkes, C.B.; Giordano, G. (2011). Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina. Bulletin of Volcanology, 73(10), 1567-1582. https://doi.org/10.1007/s00445-011-0524-6