Vol. 44 No. 1 (2022): Boletín de Geología
Artículos científicos

Extended Kalman Filter deconvolution for extracting accurate seismic reflectivity

Wilmer Téllez
Universidad Nacional de Colombia
Ovidio Almanza
Universidad Nacional de Colombia
Luis Montes-Vides
Universidad Nacional de Colombia
Bio

Published 2022-01-25

Keywords

  • Deconvolution,
  • Homomorphic,
  • Stochastic,
  • Kalman,
  • Phase-Inversion

How to Cite

Téllez, W., Almanza, O., & Montes-Vides, L. (2022). Extended Kalman Filter deconvolution for extracting accurate seismic reflectivity. Boletín De Geología, 44(1), 149–159. https://doi.org/10.18273/revbol.v44n1-2022007

Altmetrics

Abstract

Deconvolution attempts compensating for the distortions affecting a recorded seismogram, increasing its bandwidth and extracting subsurface reflectivity from such seismic trace. The estimated reflectivity needs the highest reliability and resolution because of its subsequent use in the pre-stack seismic processing sequence and seismic inversion. We implemented the predictive deconvolution algorithms, the homomorphic Phase Inversion, and the Extended Kalman Filtering. Their application to synthetic traces extracted reflectivity whose comparison with well-bore allowed comparing the reliability between methods. The algorithms applied to an offshore record provided results whose comparison permitted to analyze the impact of the deconvolution assumptions on each method performance.

Downloads

Download data is not yet available.

References

  1. Arya, V.; Holden, H. (1978). Deconvolution of seismic data - an overview. IEEE Transactions on Geoscience Electronics, 16(2), 95-98. https://doi.org/10.1109/TGE.1978.294570
  2. Claerbout, J. (1985). Fundamentals of seismic data processing: with applications to petroleum prospecting. Blackwell Scientific Publications.
  3. Crump, N. (1974). A Kalman Filter approach to the deconvolution of seismic signals. Geophysics, 39(1), 1-13. https://doi.org/10.1190/1.1440408
  4. Deng, X.; Zhang, Z.; Yang, D. (2016). Seismic data deconvolution using Kalman Filter based on a new system model. Geophysics, 81(1), V31-V42. https://doi.org/10.1190/geo2014-0611.1
  5. Julier, S.; Uhlmann, J. (1997). A new extension of the Kalman Filter to nonlinear systems. SPIE 3068, Signal Processing, Sensor Fusion, and, Target Recognition VI. https://doi.org/10.1117/12.280797
  6. Jurkevics, A.; Wiggins, R. (1984). A critique of seismic deconvolution methods. Geophysics, 49(12), 2109-2116. https://doi.org/10.1190/1.1441627
  7. Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35-45. https://doi.org/10.1115/1.3662552
  8. Lichman, E. (1999). Phase inversion deconvolution for surface consistent processing and multiple attenuation. SEG 69th Annual Meeting Expanded Abstracts. Houston, USA.
  9. Lichman, E.; Northwood, J. (1995). Phase inversion deconvolution for long and short period multiples attenuation. Geophysical Prospecting, 43(4), 469-486. https://doi.org/10.1111/j.1365-2478.1995.tb00262.x
  10. Mahalanabis, A.; Prasad, S.; Mohandas, K. (1983). On the application of the fast Kalman algorithm to adaptive deconvolution of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 21(4), 426-433. https://doi.org/10.1109/TGRS.1983.350503
  11. Robinson, E.A.; Treitel, S. (2000). Geophysical signal analysis. SEG Library. https://doi.org/10.1190/1.9781560802327
  12. Ulrych, T. (1971). Application of homomorphic deconvolution to seismology. Geophysics, 36(4), 650-660. https://doi.org/10.1190/1.1440202
  13. Yilmaz, O. (2008). Seismic data processing. Investigations in Geophysics, SEG.
  14. Ziolkowski, A. (1991). Why don’t we measure seismic signatures? Geophysics, 56(2), 190-201. https://doi.org/10.1190/1.1443031