Vol. 43 No. 1 (2021): Boletín de Geología
Artículos científicos

Mineralogy and U/Pb ages of rutile-(Nb,Ta) related to cassiterite, and columbite from Mesoproterozoic rocks of the Amazonian Craton near Cachicamo, Colombia

Jose Alejandro Franco
Universidad Nacional de Colombia
Bio
Thomas Cramer
Universidad Nacional de Colombia
Bio
Amed Bonilla
Universidad Nacional de Colombia
Bio
Antonio Jose Castañeda
Julius Maximilians Universität Würzburg
Bio
Marc Poujol
Universidad de Rennes
Bio
Zeze Amaya
Universidad Nacional de Colombia
Bio

Published 2021-01-07

Keywords

  • Mineralogy,
  • pXRF,
  • Geochronology,
  • Rutile-(Nb,Ta),
  • Amazonian Craton,
  • Colombia
  • ...More
    Less

How to Cite

Franco, J. A., Cramer, T., Bonilla, A., Castañeda, A. J., Poujol, M., & Amaya, Z. (2021). Mineralogy and U/Pb ages of rutile-(Nb,Ta) related to cassiterite, and columbite from Mesoproterozoic rocks of the Amazonian Craton near Cachicamo, Colombia. Boletín De Geología, 43(1), 99–126. https://doi.org/10.18273/revbol.v43n1-2021005

Altmetrics

Abstract

In order to clarify if rutile-(Nb,Ta) mega-crystals in the Indigenous Cachicamo community (NE-Vichada-department, Colombia) are derived from rocks of the Parguaza Rapakivi Granite suite, samples were extracted from a ferruginous duricrust layer (composed of hematite, goethite, limonite, ± magnetite, ilmenite, zircon, and rock fragments) of a lateritic profile over granitoid basement rocks and analyzed together with soils and concentrates. Density and pXRF measurements of >250 rutiles revealed a strong variation from low-density (~3.4 g/cm3), nearly-pure TiO2-rutiles, to rutile-(Nb,Ta) crystals (up-to 5.9 g/cm3) enriched in Nb, Ta, Fe, Mn, Sn, V and W. Metallography, SEM-EDX, XRF and XRD exhibited up-to 0.2 mm- inclusions of ~17% columbite-(Fe) and 4% cassiterite in a ~78% rutile-(Nb,Ta) matrix, where EPMA values of ~72% TiO2, 11% Nb2O5, 9% Ta2O5, 6% Fe2O3 and 1.5% SnO2 confirm, together with low W and Mn, pegmatitic-pneumatolytic conditions. ICP-MS measurements yielded enough U for encouraging LA-ICP-MS dating in the University of Rennes 1, where, using rutile standards R10 and R19, in ten rutile-(Nb,Ta) crystals, concordant U/Pb-ages of 1512±12 My were determined. These ages confirm the former assumption based on field observation that the Cachicamo rutiles-(Nb,Ta) originally crystalized within the 1500-1550 My-old Parguaza Granite in Venezuela, where secondary deposits contain similar (sub-?) economic cassiterite, rutile-(Nb,Ta), columbite-tantalite and monazite. Additionally, the analysis of different horizons containing zircon, ilmenite and magnetite, showed that rutiles-(Nb,Ta) are restricted to the duricrust horizon. Detrital zircons from the A-horizon (duricrust) revealed a similar age span of 1525 My, which is coeval with the Parguaza Batholith reported in Venezuela, whereas ages of 1415 My of zircons from the C-horizon (regolith) coincide with the local Parguaza Rapakivi Granite ages (1340-1402 My). Hence, this study supports a nonlocal source for the Cachicamo rutile-(Nb,Ta) crystals, which probably had experienced a post-exhumation transport westward over several tens of kilometres through a zone which nowadays is deepened by the Orinoco-river valley.

Downloads

Download data is not yet available.

References

Aarden, H.M.; Davidson. M.T. (1977). Minerales de estaño, niobio, tántalo y titanio en la zona del Cano Aguamena, Estado Bolívar, analizados con microsonda de electrones. V Congreso Geológico Venezolano, Caracas, Venezuela.

Aparicio, O.J.; González, E.; Rivera L.R. (1977). Estudio geoeconómico preliminar para prospección de minerales de estaño en el área de Aguamena, Territorio Federal, Amazonas, Venezuela. V Congreso Geológico Venezolano, Caracas, Venezuela.

Barrios, F.; Rivas, D. (1980). Reconocimiento geocronológico del Territorio Federal Amazonas, Venezuela. Boletín de la Sociedad Venezolana de Geólogos, 21, 1-12.

Bettencourt, J.S.; Tosdal, R.M.; Leite, W.B.; Payolla, B.L. (1999). Mesoproterozoic rapakivi granites of the Rondônia Tin Province, southwestern border of the Amazonian craton, Brazil — I. Reconnaissance U–Pb geochronology and regional implications. Precambrian Research, 95(1-2), 41-67. https://doi.org/10.1016/S0301-9268(98)00126-0

Bettencourt, J.S.; Leite, W.B.; Goraieb, C.L.; Sparrenberger, I.; Bello, R.; Payolla, B.L. (2005). Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics. Lithos, 80(1-4), 363-386. https://doi.org/10.1016/j.lithos.2004.03.060

Best, M.G. (2003). Igneous and metamorphic petrology. (2nd ed) Blackwell publishing.

Bolívar, P.A.; Manrique, A.C. (2011). Estudio preliminar de los depósitos de tantalita, columbita y casiterita, a través de imágenes spot de la hoja 6734 de cartosur i y ii, en la zona suroeste del Municipio Cedeño, Estado Bolívar, Venezuela. Tesis, Universidad de Oriente, Ciudad Bolívar.

Bonilla-Pérez, A.; Frantz, J.C.; Charão-Marques, J.; Cramer, T.; Franco, J.A.; Mulocher, E.; Amaya-Perea, Z. (2013). Petrografía, geoquímica y geocronología del Granito de Parguaza en Colombia. Boletín de Geología, 35(2), 83-104.

Bonilla, A.; Frantz, J.C.; Charão-Marques, J.; Cramer, T.; Franco, J.A.; Amaya, Z. (2016). Magmatismo rapakivi en la cuenca del rio Inirida, departamento de Guainía, Colombia. Boletín de Geología, 38(1), 17-32. https://doi.org/10.18273/revbol.v38n1-2016001

Bonilla, A.; Cramer, T.; Poujol, M.; Cano, H.; Franco, J.A.; Amaya, Z. (2019). Petrografía, geoquímica y geocronología U/Pb en circones de rocas ígneas y metamórficas a lo largo del río Cuiarí en el sur del Departamento de Guainía, Colombia. Boletín de Geología, 41(1), 55-84. https://doi.org/10.18273/revbol.v41n1-2019003

Boutin, A.; De Saint Blanquat, M.; Poujol, M.; Boulvais, P.; De Parseval, P.; Rouleau.; Robert, J.F. (2016). Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc–chlorite deposit. International Journal of Earth Sciences, 105(3), 747-770. https://doi.org/10.1007/s00531-015-1223-x

Bracciali, L.; Parrish, R.R.; Horstwood, M.S.A.; Condon, D.J.; Najman, Y. (2013). U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance. Chemical Geology, 347, 82-101. https://doi.org/10.1016/j.chemgeo.2013.03.013

Brooks, W.E.; Gray, F. (1993). Tin-(rare earth element, niobium-tantalum) placers. In: Geology and mineral resources assessment of the Venezuelan Guayana Shield (p. 88-89). Vol. 2062. Geological Survey and Corporación Venezolana de Guayana, Técnica Minera C.A.

Büdel, J. (1981). Klima-Geomorphologie. Gebrüder Borntraeger.

Buenaventura, J.; Rosas, H. (1988). Reconocimiento geológico-minero entre la región de Puerto Carreño y Puerto Nariño, Comisaría del Vichada. INGEOMINAS, Bogotá.

Carlson, R.W. (2011). Absolute age determinations: Radiometric. In: H.K. Gupta (eds.). Encyclopedia of Solid Earth Geophysics (pp. 1-8). Springer Netherlands. https://doi.org/10.1007/978-90-481-8702-7_69

Carrasco, E.; Peña, L.G. (2006). Determinación de zonas óptimas para exploración en el Oriente Colombiano a través de modelamiento geoquímico. INGEOMINAS, Bogotá, Colombia.

Cerny, P.; Pault, B.J.; Hawthorne, F.C.; Chapman, R. (1981). A niobian rutile - disordered columbite intergrowth from The Huron claim pegmatite, southeastern Manitoba. Canadian Mineralogist, 19, 541-548.

Cordani, U.G.; Sato, K.; Sproessner, W.; Fernandes, F.S. (2016). U-Pb zircon ages of rocks from the Amazonas Territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazilian Journal of Geology, 46(Suppl. 1), 5-35. https://doi.org/10.1590/2317-4889201620150012

Cramer, T.; Franco, J.A.; Bonilla, A.; Poveda, A.; Amaya, Z. (2011). Caracterización de depósitos aluviales con manifestaciones de Tantalio y Niobio (Coltán) en las comunidades indígenas de Matraca y Caranacoa en el Departamento del Guainía. INGEOMINAS, Bogotá, Colombia.

Cristancho, J.I. (1989). Posibilidades de mineralizaciones de importancia económica en el Granito de Parguaza, en alrededores de Puerto Carreño (Vichada - Colombia). Tesis, Universidad Nacional de Colombia, Bogotá, Colombia.

Dall’Agnol, R.; Costi, H.; Leite, A.A.; de Magalhañes, M.; Teixeira, N. (1999). Rapakivi granites from Brazil and adjacent areas. Precambrian Research, 95(1-2), 9-39. https://doi.org/10.1016/S0301-9268(98)00125-9

Dewaele, S.; Tack, L.; Fernandez, M.; Boyce, A.; Muchez, P.; Schneider, J.; Cooper, G.; Wheeler, K. (2008). Geology and mineralization of the Gatumba area, Rwanda: Present stage knowledge. Etudes Rwandaises, 16, (6-23).

Dill, H.G.; Melcher, F.; Füßl, M.; Weber, B. (2006). Accessory minerals in cassiterite: A tool for provenance and environmental analyses of colluvial–fluvial placer deposits (NE Bavaria, Germany). Sedimentary Geology, 191(3-4), 171-189. https://doi.org/10.1016/j.sedgeo.2006.03.022

Emmons, W.H. (1940). Principles of economic geology. The Journal of Geology, 48(4), 446-447. https://doi.org/10.1086/624902

Franco, J.A. (2011). Asociaciones minerales de depósitos aluviales relacionados a cuerpos ígneo-metamórficos aflorantes en las Comunidades Indígenas de Matraca y Caranacoa, río Inírida, Departamento del Guainía. Trabajo de grado, Universidad Nacional de Colombia, Bogotá, Colombia.

Franco, J.A. (2015). Contribución a la geología histórica del Oriente Colombiano: Proveniencia de minerales metálicos con Nb, Ta, Mn, Fe, Ti, Sn y W, de un depósito laterizado, en cercanías a la Comunidad Indígena de Cachicamo, al NE del Departamento del Vichada. Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia.

Galvis, J. (2001). Aspectos geológicos del nordeste del departamento del Vichada: Colombia. INGEOMINAS, Bogotá, Colombia.

Gaudette, H.E.; Mendoza, V.; Hurley, P.M.; Fairbairn, H.W. (1978). Geology and age of the Parguaza rapakivi granite, Venezuela. GSA Bulletin, 89(9), 1335-1340. https://doi.org/10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2

Hanaor, D.A.H.; Sorrell, C.C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855-874. https://doi.org/10.1007/s10853-010-5113-0

Howard, K.E.; Hand, M.; Barovich, K.M.; Reid, A.; Wade, B.P.; Belousova, E.A. (2009). Detrital zircon ages: improving interpretation via Nd and Hf isotopic data. Chemical Geology, 262(3-4), 277-292. https://doi.org/10.1016/j.chemgeo.2009.01.029

INGEOMINAS-USGS. (1986). Mapa de terrenos geológicos de Colombia. Publicaciones Geológicas Especiales del Ingeominas, 14, 1-235.

INGEOMINAS. (2006). Potencial de recursos minerales en el oriente colombiano: compilación y análisis de la información geológica disponible. Bogotá.

INGEOMINAS. (2009). Memoria explicativa de las planchas 162, 162 bis, 182 y 182 bis Puerto Carreño, Vichada. Bogotá.

Jackson, S.E.; Pearson, N.J.; Griffi W.L.; Belousova, E.A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2), 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017

Košler, J.; Sylvester, P.J. (2003). Present trends and the future of zircon in geochronology: laser ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53(1), 243-275. https://doi.org/10.2113/0530243

London, D. (2008). Pegmatites. Vol. 10. Mineralogical Association of Canada.

López-Africano, P.E. (1998). Minería – Guainía aspectos geológicos, mineros y ambientales cuenca media y alta de los ríos Guainía e Inírida: Puerto Inírida, Convenio Andrés Bello – Secab. Contrato Sena - Secab – Nro. 0051-97. INGEOMINAS, Bogotá.

López, J.A.; Khurama, S.; Bernal, L.E.; Cuéllar, M.A. (2007). El complejo Mitú: una nueva perspectiva. XI Congreso Colombiano de Geología, Bucaramanga, Colombia. https://doi.org/10.13140/2.1.3164.0968

López, J.; Mora, B.; Jiménez, D.M.; Khurama, S.; Marín, E.; Obando, G.; Páez, T.I.; Carrillo, L.E.; Bernal, L. (2010). Cartografía geológica y muestreo geoquímico de las Planchas 297 – Puerto Inírida, 297 Bis – Merey Y 277 Bis – Amanaven, Departamento del Guainía. INGEOMINAS, Bogotá.

Ludwig, K.R. (2012). User´s manual for Isoplot 3.75 - A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication. No. 5. pp. 1–72.

Mackay, D.A.R.; Simandl, G.J. (2014). Geology, market and supply chain of niobium and tantalum—a review. Mineralium Deposita, 49(8), 1025-1047. https://doi.org/10.1007/s00126-014-0551-2

Manzotti, P.; Poujol, M.; Ballèvre, M. (2015). Detrital zircon geochronology in blueschist-facies meta-conglomerates from the Western Alps: implications for the late Carboniferous to early Permian paleogeography. International Journal of Earth Sciences, 104(3), 703-731. https://doi.org/10.1007/s00531-014-1104-8

Mariño-Pardo, N. (2012). Potencial minero del Bajo Parguaza. Revista Commodities Venezolanos, 2(6), 44-47.

Mariño-Pardo, N. (2013). Coltán (Nb y Ta): Ubicación, extracción ilegal y potencial minero, en el municipio Cedeño del Estado Bolívar. Venezuela: Propuestas. V Simposio Venezolano de Geociencias de Rocas Ígneas y Metamórficas. Caracas, Venezuela.

Meinhold, G. (2010). Rutile and its applications in earth sciences. Earth-Science Reviews, 102(1-2), 1-28. https://doi.org/10.1016/j.earscirev.2010.06.001

Melcher, F.; Graupner, T.; Gäbler, H.E.; Sitnikova, M.; Henjes-Kunst, F.; Oberthür, T.; Gerdes, A.; Dewaele, S. (2015). Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geology Reviews, 64, 667-719. https://doi.org/10.1016/j.oregeorev.2013.09.003

Melcher, F.; Graupner, T.; Gäbler, H.E.; Sitnikova, M.; Oberthür, T.; Gerdes, A.; Badanina, E.; Chudy, T. (2017). Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geology Reviews, 89, 946-987. https://doi.org/10.1016/j.oregeorev.2016.03.014

Mendoza, V. (2012). Geología de Venezuela. Gran Colombia Gold Corp.

Nasdala, L.; Beyssac, O.; Schopf, J.W.; Bleisteiner, B. (2012). Application of Raman-based Images in the Earth Sciences. In: A. Zoubir (ed.). Raman Imaging (pp. 145-187). Vol. 168. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28252-2_5

Navas, O. (1991). Informe geológico sector Puerto Carreño - Casuario, margen occidental del río Orinoco-Comisaria del Vichada. INGEOMINAS, Bogotá, Colombia.

Park, C.; Macdiarmid, R. (1981). Yacimientos minerales. Omega.

Priem, H.; Andriessen, P.; Boelrijk, N.; De Boorder, H.; Hebeda, E.; Huguett, A.; Verdumen, E.; Verschure, R. (1982). Geochronology of the Precambrian in the Amazonas region of Southeastern Colombia (Western Guainía Shield). Geologie Minjnbouw, 61(3), 229-242.

Rodríguez, S.E. (1996). Posibilidades de ubicar depósitos residuales de tantalita asociados con el Batolito de Parguaza. Región Oriental del Departamento del Vichada. INGEOMINAS, Bogotá.

Santos, J.O.S.; Hartmann, L.A.; Gaudette, H.E.; Groves, D.I.; Mcnaughton, N.J.; Fletcher, I.R. (2000). A new understanding of the Provinces of the Amazon Craton based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Research, 3(4), 453-488. https://doi.org/10.1016/S1342-937X(05)70755-3

Servicio Geológico Colombiano (2013). Cartografía geológica y muestreo geoquímico de las planchas 201 BIS, 201, 200 y 199 Departamento de Vichada. Memoria explicativa. 160 p.

Schläfer, H.L.; Gliemann, G. (1969). Basic Principles of Ligand Field Theory. Wiley Interscience.

Sial, A.N.; Bettencourt, J.S.; De Campos, C.P.; Ferreira, V.P. (2011). Granite-related ore deposits: an introduction. Geological Society, London, Special Publications, 350, 1-5. https://doi.org/10.1144/SP350.1

Sidder, G.B.; Mendoza, V. (1995). Geology of the Venezuela Guayana Shield and its relation to the Geology of the entire Guayana Shield. U.S. Geological Survey, Bull No. 2124, pp. B1–B41. https://doi.org/10.3133/ofr91141

Simmons, W.B.; Webber, K.L. (2008). Pegmatite genesis: state of the art. European Journal of Mineralogy, 20(4), 421-438. https://doi.org/10.1127/0935-1221/2008/0020-1833

Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala. L.; Norberg, N.; Schaltegger, U., Schoene, B.; Tubrett, M.N.; Whitehouse, M.J. (2008). Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

Sylvester, P. (2012). Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada Short Course Volume 42.

Tassinari, C.C.G.; Macambira, M.J.B. (1999). Geochronological provinces of the Amazonian Craton. Episodes, 22(3), 174-182. https://doi.org/10.18814/epiiugs/1999/v22i3/004

Tkachev, A.V. (2011). Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. Geological Society, London, Special Publications, 350(1), 7-23. https://doi.org/10.1144/SP350.2

Watson, E.B.; Wark, D.A.; Thomas, J.B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4), 413-433. https://doi.org/10.1007/s00410-006-0068-5

Zack, T.; Von Eynatten, H.; Kronz, A. (2004). Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171(1-4), 37-58. https://doi.org/10.1016/j.sedgeo.2004.05.009

Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. (2011). In situ U–Pb rutile dating by LA-ICPMS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology, 62(3), 515-530. https://doi.org/10.1007/s00410-011-0609-4