Vol. 43 No. 2 (2021): Boletín de Geología
Artículos científicos

Structural changes caused by dips in lateral ramps of fold and thrust belts

Miguel Ángel Orjuela
Universidad Industrial de Santander
Bio
Dilan Arturo Martínez-Sánchez
Universidad Industrial de Santander
Bio
Giovanny Jiménez
Universidad Industrial de Santander
Bio

Published 2021-05-31

Keywords

  • Lateral ramp,
  • Transverse zone,
  • Analogue modeling

How to Cite

Orjuela, M. Ángel, Martínez-Sánchez, D. A., & Jiménez, G. (2021). Structural changes caused by dips in lateral ramps of fold and thrust belts. Boletín De Geología, 43(2), 29–44. https://doi.org/10.18273/revbol.v43n2-2021002

Altmetrics

Abstract

Transverse zones are tectonic structures parallel or oblique to the shortening direction. Lateral ramps are inherited tectonic structures and are comprised in a transverse zone. During shortening transverse zones are usually confused with simple strike-slip faults. We evaluated 36 analogue models under brittle conditions using two frontal ramps connected by a lateral ramp at different inclinations (30°, 45°, and 60°) to identify lateral ramps characteristics in the fold and thrust belts. The experiments were conducted in a subduction-type sandbox, using dry sand and a rigid block, representing a brittle crust and the backstop. During shortening, faults and folds related grow parallel to frontal ramps. Significative plunges correlate with the inclination of the lateral ramp. The oblique faults dipped along the direction opposite to the lateral ramp, while the normal faults parallel to the lateral ramp only occurred when linked to lateral ramps with high inclinations. The inclination of the lateral ramp controls the plunge and rotation of the folds and thrust structures. Regardless of the lateral ramp inclinations, in map view, the main characteristics used to identify lateral ramps are i) disrupted structures along the strike in the lateral ramp area and ii) oblique faults related to frontal ramp structures.

Downloads

Download data is not yet available.

References

Apotria, T.G.; Snedden, W.T.; Spang, J.H.; Wiltschko, D.V. (1992). Kinematic models of deformation at an oblique ramp. In: K.R. McClay (ed.). Thrust Tectonics (pp. 141-154). Springer Netherlands. https://doi.org/10.1007/978-94-011-3066-0_12

Apotria, T.G. (1995). Thrust sheet rotation and out-of-plane strains associated with oblique ramps: An example from the Wyoming salient U.S.A. Journal of Structural Geology, 17(5), 647-662. https://doi.org/10.1016/0191-8141(94)00087-G

Araque-Gómez, C.N.; Otero-Ramírez, J.L. (2016). Zonas transversales y su relación con estructuras regionales, Flanco O- Cordillera Oriental. Tesis, Universidad Industrial de Santander, Bucaramanga, Colombia.

Aridhi, K.; Bagga, M.A.O.; Abdeljaouad, S.; Zargouni, F.; Mercier, E. (2011). Lateral ramp-related folding evidences in the Tellian domain of Tunisia: Tectonic implications. Comptes Rendus - Geoscience, 343(5), 360-369. https://doi.org/10.1016/j.crte.2011.03.004

Bayona, G.; Thomas, W.A.; Van der Voo, R. (2003). Kinematics of thrust sheets within transverse zones: A structural and paleomagnetic investigation in the Appalachian thrust belt of Georgia and Alabama. Journal of Structural Geology, 25(8), 1193-1212. https://doi.org/10.1016/S0191-8141(02)00162-1

Bureau, D.; Mourgues, R.; Cartwright, J. (2014). Use of a new artificial cohesive material for physical modelling: Application to sandstone intrusions and associated fracture networks. Journal of Structural Geology, 66, 223-236. https://doi.org/10.1016/j.jsg.2014.05.024

Butler, R.W.H. (1982). The terminology of structures in thrust belts. Journal of Structural Geology, 4(3), 239-245. https://doi.org/10.1016/0191-8141(82)90011-6

Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics, 116(4-5), 615-626. https://doi.org/10.1007/BF00876528

Calassou, S.; Larroque, C.; Malavieille, J. (1993). Transfer zones of deformation in thrust wedges: An experimental study. Tectonophysics, 221(3-4), 325-344. https://doi.org/10.1016/0040-1951(93)90165-G

Cook, B.S.; Thomas, W.A. (2009). Superposed lateral ramps in the Pell City thrust sheet, Appalachian thrust belt, Alabama. Journal of Structural Geology, 31(9), 941-949. https://doi.org/10.1016/j.jsg.2009.06.001

Davis, D.; Suppe, J.; Dahlen, F.A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88(B2), 1153-1172. https://doi.org/10.1029/JB088iB02p01153

De Lamotte, D.F.; Guézou, J.C. (1996). Distinguishing lateral folds in thrust systems: examples from Corbieres (SW France) and Betic Cordillera (SE Spain): Reply. Journal of Structural Geology, 18(8), 1107-1109. https://doi.org/10.1016/0191-8141(96)00027-2

Dixon, J.M.; Spratt, D.A. (2004). Deformation at lateral ramps and tear faults—centrifuge models and examples from the Canadian Rocky Mountain Foothills. In: K.R. McClay (ed.). Thrust tectonics and hydrocarbon systems (pp. 239-258). AAPG memoir 82. https://doi.org/10.1306/M82813C14

Dooley, T.P.; Schreurs, G. (2012). Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574-575, 1-71. https://doi.org/10.1016/j.tecto.2012.05.030

García, H.; Jiménez, G. (2016). Análisis estructural del Anticlinal de Zipaquirá (Cordillera Oriental, Colombia). Boletín de Ciencias de La Tierra, 39, 21-32. https://doi.org/10.15446/rbct.n39.50333

Gomes, C.J.S. (2013). Investigating new materials in the context of analog-physical models. Journal of Structural Geology, 46, 158-166. https://doi.org/10.1016/j.jsg.2012.09.013

Graveleau, F.; Malavieille, J.; Dominguez, S. (2012). Experimental modelling of orogenic wedges: A review. Tectonophysics, 538-540, 1-66. https://doi.org/10.1016/j.tecto.2012.01.027

Hubbert, M.K. (1937). Theory of scale models as applied to the study of geologic structures. GSA Bulletin, 48(10), 1459-1520. https://doi.org/10.1130/GSAB-48-1459

Koyi, H. (1997). Analogue modelling: From a qualitative to a quantitative technique - A historical outline. Journal of Petroleum Geology, 20(2), 223-238. https://doi.org/10.1111/j.1747-5457.1997.tb00774.x

Kwon, S.; Mitra, G. (2006). Three-dimensional kinematic history at an oblique ramp, Leamington zone, Sevier belt, Utah. Journal of Structural Geology, 28(3), 474-493. https://doi.org/10.1016/j.jsg.2005.12.011

Kwon, S.; Mitra, G. (2012). An alternative interpretation for the map expression of “abrupt” changes in lateral stratigraphic level near transverse zones in fold-thrust belts. Geoscience Frontiers, 3(4), 401-406. https://doi.org/10.1016/j.gsf.2012.01.001

Lacquement, F.; Averbuch, O.; Mansy, J.L.; Szaniawski, R.; Lewandowski, M. (2005). Transpressional deformations at lateral boundaries of propagating thrust-sheets: The example of the Meuse Valley Recess within the Ardennes Variscan fold-and-thrust belt (N France-S Belgium). Journal of Structural Geology, 27(10), 1788-1802. https://doi.org/10.1016/j.jsg.2005.05.017

McClay, K.R. (1992). Glossary of thrust tectonics terms. In: K.R. McClay (ed.). Thrust Tectonics (pp. 419-433). Springer Netherlands.

Mon, R.; Monaldi, C.R.; Salfity, J.A. (2005). Curved structures and interference fold patterns associated with lateral ramps in the Eastern Cordillera, Central Andes of Argentina. Tectonophysics, 399(1-4), 173-179. https://doi.org/10.1016/j.tecto.2004.12.021

Pohn, H. A. (2000). Lateral ramps in the folded Appalachians and in overthrust belts worldwide; a fundamental element of thrust-belt architecture. Report, US Geological Survey. https://doi.org/10.3133/b2163

Rosas, F.M.; Duarte, J.C.; Almeida, P.; Schellart, W.P.; Riel, N.; Terrinha, P. (2017). Analogue modelling of thrust systems: Passive vs. active hanging wall strain accommodation and sharp vs. smooth fault-ramp geometries. Journal of Structural Geology, 99, 45-69. https://doi.org/10.1016/j.jsg.2017.05.002

Schellart, W.P. (2000). Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling. Tectonophysics, 324(1-2), 1-16. https://doi.org/10.1016/S0040-1951(00)00111-6

Schellart, W.P.; Strak, V. (2016). A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments. Journal of Geodynamics, 100, 7-32. https://doi.org/10.1016/j.jog.2016.03.009

Schreurs, G.; Buiter, S.J.H.; Boutelier, J.; Burberry, C.; Callot, J.P.; Cavozzi, C.; Cerca, M.; Chen, J.H.; Cristallini, E.; Cruden, A.R.; Cruz, L.; Daniel, J.M.; Da Poian, G.; Garcia, V.H.; Gomes, C.J.S.; Grall, C.; Guillot, Y.; Guzmán, C.; Hidayah, T.N.; Hilley, G.; Klinkmüller, M.; Koyi, H.A.; Lu, C.Y.; Maillot, B.; Meriaux, C.; Nilfouroushan, F.; Pan, C.C.; Pillot, D.; Portillo, R.; Rosenau, M.; Schellart, W.P.; Schlische, R.W.; Take, A.; Vendeville, B.; Vergnaud, M.; Vettori, M.; Wang, S.H.; Withjack, M.O.; Yagupsky, D.; Yamada, Y. (2016). Benchmarking analogue models of brittle thrust wedges. Journal of Structural Geology, 92, 116-139. https://doi.org/10.1016/j.jsg.2016.03.005

Solaque, D.; Lizcano, A. (2008). Ángulo de fricción crítico y ángulo de reposo de la arena de Guamo. Revista Épsilon, 11, 7-20.

Thomas, W.A. (1990). Controls on locations of transverse zones in thrust belts. Eclogae Geologicae Helvetiae, 83(3), 727-744.

Wilkerson, M.S.; Marshak, S.; Bosworth, W. (1992). Computerized tomographic analysis of displacement trajectories and three-dimensional fold geometry above oblique thrust ramps. Geology, 20(5), 439-442. https://doi.org/10.1130/0091-7613(1992)020<0439:CTAODT>2.3.CO;2

Wilkerson, M.S.; Apotria, T.; Farid, T. (2002). Interpreting the geologic map expression of contractional fault-related fold terminations: lateral/oblique ramps versus displacement gradients. Journal of Structural Geology, 24(4), 593-607. https://doi.org/10.1016/S0191-8141(01)00111-0