Vol. 44 Núm. 3 (2022): Boletín de Geología
Artículos científicos

Caracterización geoquímica y geomecánica de la Formación Mungaroo, offshore del noroeste de Australia

Carlos Fernando Caicedo-Amaya
Universidad Industrial de Santander
Rocio Bernal-Olaya
Universidad Industrial de Santander
Erick Johan Illidge-Araujo
Ecopetrol

Publicado 2022-10-26

Palabras clave

  • Historias de enterramiento,
  • Flujo termal,
  • Cocinas,
  • Fragilidad

Cómo citar

Caicedo-Amaya, C. F., Bernal-Olaya, R., & Illidge-Araujo, E. J. (2022). Caracterización geoquímica y geomecánica de la Formación Mungaroo, offshore del noroeste de Australia. Boletín De Geología, 44(3), 95–117. https://doi.org/10.18273/revbol.v44n3-2022004

Altmetrics

Resumen

La caracterización geoquímica de las rocas de la Formación Mungaroo muestra la presencia de kerógeno III y II/III, lo cual caracteriza al Exmouth Plateau como una cuenca con potencial gasífero. Usando trece historias de enterramiento elaboradas con datos de pozo, identificamos tres tendencias: una con altas tasas de sedimentación durante el Triásico Medio y el Triásico Tardío (69,3-95,3 m/Ma), una con altas tasas de sedimentación durante el Cretácico Medio y Tardío (67-158 m/Ma) y, por último, una con tasas de sedimentación bajas durante el Cretácico Tardío hasta el presente (18-40 m/Ma). Estas tendencias definen zonas activas de generación (o cocinas) entre 2,000 y 4,400 km2. Las altas tasas de sedimentación durante el Triásico y el Cretácico fueron fundamentales para que la Formación Mungaroo alcanzara las profundidades necesarias para transformar su materia orgánica. Por otro lado, en la zona con tasas de sedimentación baja, el flujo termal radiogénico fue fundamental para la transformación de esta materia orgánica. La generación/expulsión de estos shales ocurre desde hace más de 100 Ma, lo que explica las grandes acumulaciones de gas en la subcuenca. Actualmente, la formación Mungaroo se encuentra en ventana de generación de gas, a 4,500-4,800 a 5,500 m de profundidad bajo el nivel del mar. Los shales de esta unidad presentan valores de TOC mayores a 2% y alcanzan la ventana de generación de gas (Ro% >1,3), sugiriendo su potencial como un posible yacimiento no convencional de gas. Sin embargo, características geomecánicas, como su poca fragilidad, baja sobrepresión y espesor descartan su potencial no convencional.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Afife, M.M.; Al-Atta, M.A.; Ahmed, M.A.; Issa, G.I. (2016). Thermal maturity and hydrocarbon generation of the Dawi Formation, Belayim Marine Oil Field, Gulf of Suez, Egypt: a 1D basin modeling case study. Arabian Journal of Geosciences, 9(5), 331. https://doi.org/10.1007/s12517-016-2320-2
  2. Amobi, J.O.; Okogbue, C.O.; Mode, A.W.; Ofoma, A.E.; Dim, C.I.; Okwara, I.C. (2019). Regional 1D hydrocarbon maturation modelling of the Cenomanian–Turonian Lokpanta Shale, southern Benue Trough, Nigeria: Implications for the origin of Niger Delta deep sea oils. Journal of Earth System Science, 128(7), 174. https://doi.org/10.1007/s12040-019-1192-8
  3. Anderson, E.M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387-402. https://doi.org/10.1144/transed.8.3.387
  4. Apthorpe, M. (1988). Cainozoic depositional history of the North West Shelf. The North West Shelf Symposium, Perth, Australia.
  5. Banerjee, A.; Sinha, A.K.; Jain, A.K.; Thomas, N.J.; Misra, K.N.; Chandra, K. (1998). A mathematical representation of Rock-Eval hydrogen index vs Tmax profiles. Organic Geochemistry, 28(1-2), 43-55. https://doi.org/10.1016/S0146-6380(97)00119-8
  6. Barber, P. (1982). Palaeotectonic evolution and hydrocarbon genesis of the central Exmouth Plateau. The APPEA Journal, 22(1), 131-144. https://doi.org/10.1071/AJ81008
  7. Barber, P. (1988). The Exmouth Plateau deep water frontier: a case study. The North West Shelf Symposium, Perth, Australia.
  8. Barber, P. (2013). Oil exploration potential in the Greater Northern Australian – New Guinea Super Gas Province. West Australian Basins Symposium, Perth, Australia.
  9. Bilal, A.; McClay, K. (2022). Tectonic and stratigraphic evolution of the central Exmouth Plateau, NW Shelf of Australia. Marine and Petroleum Geology, 136, 105447. https://doi.org/10.1016/j.marpetgeo.2021.105447
  10. Blevin, J.E.; Sephenson, A.E.; West, B.G. (1994). Mesozoic structural development of the Beagle Sub-Basin- implication for the Petroleum potential of the Northern Carnarvon Basin. The Sedimentary Basins of Western Australia, Symposium, Perth, Australia.
  11. Blewett, R.S.; Kennett, B.L.N.; Huston, D.L. (2012). Australia in time and space. In: R.S. Blewett (ed.). Shaping a Nation: A Geology of Australia (pp. 47-119). Geoscience Australia and ANU E Press.
  12. Bradshaw, M.T.; Yeates, A.N.; Beynon, R.M.; Brakel, A.T.; Langford, R.P.; Totterdell, J.M.; Yeung, M. (1988). Palaeogeographic evolution of the North West Shelf Region. The North West Shelf Symposium, Perth, Australia.
  13. Bradshaw, J.; Sayers, J.; Bradshaw, M.; Kneale, R.; Ford, C.; Spencer, L.; Lisk, M. (1998). Palaeogeography and its impact on the petroleum systems of the North West Shelf, Australia. The Sedimentary Basins of Western Australia II, Perth, Australia.
  14. Burnham, A.K. (1989). A simple kinetic model of petroleum formation and cracking. Lawrence Livermore National Lab Report, USA, UCID-21665, pp. 11.
  15. Cathro, D.L.; Karner, G.D. (2006). Cretaceous-Tertiary inversion history of the Dampier Sub‑basin, northwest Australia: Insights from quantitative basin modelling. Marine and Petroleum Geology, 23(4), 503-526. https://doi.org/10.1016/j.marpetgeo.2006.02.005
  16. Chongzhi, T.; Guoping, B.; Junlan, L.; Chao, D.; Xiaoxin, L.; Houwu, L.; Dapeng, W. (2013). Mesozoic lithofacies palaeogeography and petroleum prospectivity in North Carnarvon Basin, Australia. Journal of Palaeogeography, 2(1), 81-92. https://doi.org/10.3724/SP.J.1261.2013.00019
  17. Coblentz, D.D.; Zhou, S.; Hillis, R.R.; Richardson, R.M; Sandiford, M. (1998). Topography, boundary forces, and the Indo-Australian intraplate stress field. Journal of Geophysical Research: Solid Earth, 103(B1), 919-931. https://doi.org/10.1029/97JB02381
  18. Dempsey, C.; Benson, R.; O’Halloran, G.; Schenk, O.; Karvelas, A.; Tewari, S. (2019). New insights into the Exmouth Sub-basin: tectono-stratigraphic evolution. ASEG Extended Abstracts, 2019(1), 1-9. https://doi.org/10.1080/22020586.2019.12073004
  19. Eaton, B. (1975). The Equation for Geopressure Prediction from Well Logs. 50th Annual Fall Meeting of SPE of AIME, Dallas, Texas, USA. https://doi.org/10.2118/5544-MS
  20. Eissa, E.A.; Kazi, A. (1988). Relation between static and dynamic Young’s moduli of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(6), 479-482. https://doi.org/10.1016/0148-9062(88)90987-4
  21. Exon, N.F.; Willcox, J.B. (1980). The Exmouth Plateau: Stratigraphy, structure and petroleum potential. Bureau of Mineral Resources, Geology and Geophysics.
  22. Exon, N.F.; Colwell, J.B. (1994). Geological history of the outer North West Shelf of Australia: A synthesis. Journal of Australian Geology and Geophysics, 15(1), 177-190.
  23. Feng, Y.W.; Ren, Y.; Zhang, G.C.; Qu, H.J. (2020). Petroleum geology and exploration direction of gas province in deepwater area of North Carnarvon Basin, Australia. China Geology, 3(4), 623-632. https://doi.org/10.31035/cg2020064
  24. Gawad, E.A.; Fathy, M.; Reda, M.; Ewida, H. (2021). Source rock evaluation of the Central Gulf of Suez, Egypt: A 1D basin modelling and petroleum system analysis. Geological Journal, 56(7), 3850-3867. https://doi.org/10.1002/gj.4140
  25. Geoscience Australia. (2014). Regional Geology of the Northern Carnarvon Basin. Offshore Petroleum Exploration ACREAGE Release, Australian Government, Department of Industry.
  26. Goncharov, A.; Deighton, I.; Duffy, L.; McLaren, S.; Tischer, M.; Heine, C. (2006). Basement and crustal controls on hydrocarbons maturation on the Exmouth Plateau, North West Australian Margin. AAPG International Conference and Exhibition, Perth, Australia.
  27. Gray, D.; Anderson, P.; Logel, J.; Delbecq, F.; Schmidt, D.; Schmid, R. (2012). Estimation of stress and geomechanical properties using 3D seismic data. First Break, 30(3), 59-68. https://doi.org/10.3997/1365-2397.2011042
  28. He, S.; Middleton, M. (2002). Heat flow and thermal maturity modelling in the Northern Carnarvon Basin, North West Shelf, Australia. Marine and Petroleum Geology, 19(9), 1073-1088. https://doi.org/10.1016/S0264-8172(03)00003-5
  29. Hearty, D.J.; Ellis, G.K.; Webster, K.A. (2002). Geological history of the western Barrow Sub‑basin: implications for hydrocarbon entrapment at Woollybutt and surrounding oil and gas fields. The Sedimentary Basins of Western Australia 3, Symposium, Perth, Australia.
  30. Higgins-Borchardt, S.; Sitchler, J.; Bratton, T. (2016). Geomechanics for Unconventional Reservoirs. In: Y.Z. Ma, S.A. Holditch (eds.). Unconventional Oil and Gas Resources Handbook: Evaluation and Development (pp. 199-213). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-802238-2.00007-9
  31. Hocking, R.M. (1988). Regional geology of the North Carnarvon basin. The North West Shelf Symposium, Perth, Australia.
  32. Hocking, R.M. (1990). Carnarvon Basin. In: Geology and mineral resources of Western Australia (pp. 457-495). Western Australia Geological Survey Memoir, 3.
  33. Horsrud, P. (2001). Estimating mechanical properties of shale from empirical correlations. SPE Drilling & Completion, 16(2), 68-73. https://doi.org/10.2118/56017-PA
  34. Illidge, E. (2017). Inversión y atributos sísmicos en la clasificación de litotipos. Tesis de Maestría, Universidad Industrial de Santander, Bucaramanga, Colombia.
  35. Jablonski, D. (1997). Recent advances in the sequence stratigraphy of the Triassic to Lower Cretaceous succession in the northern Carnarvon Basin, Australia. The APPEA Journal, 37(1), 429-454. https://doi.org/10.1071/AJ96026
  36. Jablonski, D.; Saitta, A.J. (2004). Permian to Lower Cretaceous plate tectonics and its impact on the tectono-stratigraphic development in the Western Australia margin. The APPEA Journal, 44(1), 287-328. https://doi.org/10.1071/AJ03011
  37. Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R. (2007). Fundamentals of Rock Mechanics. Willey-Blackwell.
  38. Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. (2007). Unconventional shale gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale gas assessment. AAPG Bulletin, 91(4), 475-499. https://doi.org/10.1306/12190606068
  39. Jenkins, C.C.; Maughan, D.M.; Acton, J.H.; Duckett, A.; Korn, B.E; Teakle, R.P. (2003). The Jansz gas field, Carnarvon Basin, Australia. The APPEA Journal, 43(1), 303-324. https://doi.org/10.1071/AJ02016
  40. Jones, R.W. (1984). Comparison of Carbonate and Shale Source Rocks. In: J.G. Palacas (ed.). Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (pp. 163-180). AAPG.
  41. Kaiko, A.R.; Tait, A. (2001). Post-rift tectonic subsidence and palaeo-water depths in the Northern Carnarvon Basin, Western Australia. The APPEA Journal, 41(1), 367-379. https://doi.org/10.1071/AJ00017
  42. Lal, M. (1999). Shale stability: drilling fluid interaction and shale strength. SPE Asia Pacific Oil and Gas Conference Exhibition, Jakarta, Indonesia. https://doi.org/10.2118/54356-MS
  43. Law, C.A. (1999). Evaluating source rocks. In: E.A. Beaumont, N.H. Foster (eds.). Exploring for oil and gas traps, Treatise of Petroleum Geology/ Handbook of Petroleum Geology (pp. 6-41). Chapter 6, AAPG.
  44. Malcolm, R.J.; Pott, M.C.; Delfos, E. (1991). A new tectono-stratigraphic synthesis of the North West Cape area. The APPEA Journal, 31(1), 154-176. https://doi.org/10.1071/AJ90013
  45. McKenzie, D. (1978). Some remarks on the development of sedimentary basin. Earth and Planet Science Letters, 40(1), 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
  46. McNally, G.H. (1987). Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration, 24(4-5), 381-395. https://doi.org/10.1016/0016-7142(87)90008-1
  47. Moss, S.; Barr, D.; Kneale, R.; Clews, P.; Cruse, T. (2003). Mid to Late Jurassic shallow marine sequences of the eastern Barrow Sub-basin: the role of low-stand deposition in new exploration concepts. The APPEA Journal, 43(1), 231-253. https://doi.org/10.1071/AJ02012
  48. Müller, R.D.; Mihut, D.; Baldwin, S. (1998). A new kinematic model for the formation and evolution of the west and northwest Australian margin. The Sedimentary Basins of Western Australia II, Symposium, Perth, Australia.
  49. Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolisis. AAPG Bulletin, 70(3), 318-329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D
  50. Peters, K.E.; Cassa, M.R. (1994). Applied source rock geochemistry. In: L.B. Magoon, W.G. Dow (eds.). The petroleum system: From source to trap (pp. 93-117). AAPG Memoir 60.
  51. Polomka, S.M.; Bruins, J.; Spanninga, G.A.; Mennie, J.P. (1999). WA-271-P, exmouth Sub-basin-integrated prospectivity evaluation. The APPEA Journal, 39(1), 115-127. https://doi.org/10.1071/AJ98008
  52. Reynolds, S.D.; Coblentz, D.D.; Hillis, R.R. (2002). Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling. Journal of Geophysical Research: Solid Earth, 107(B7), 1-15. https://doi.org/10.1029/2001JB000408
  53. Rohead-O’Brien, H.; Elders, C. (2018). Controls on Mesozoic rift-related uplift and synextensional sedimentation in the Exmouth Plateau. ASEG Extended Abstracts, 2018(1), 1-8. https://doi.org/10.1071/ASEG2018abM2_2B
  54. Romine, K.K.; Durrant, J.M.; Cathro, D.L.; Bernardel, G. (1997). Petroleum play element prediction for the Cretaceous–Tertiary basin phase, Northern Carnarvon Basin. The APPEA Journal, 37(1), 315-339. https://doi.org/10.1071/AJ96020
  55. Schenk, O.; Dempsey, C.; Benson, R.; Cheng, M.; Tewari, S.; Karvelas, A.; Bancalà, G. (2020). Comprehensive basin-wide 3D petroleum systems modelling providing new insights into proven petroleum systems and remaining prospectivity in the Exmouth Sub-basin, Australia. The APPEA Journal, 60(2), 753-760. https://doi.org/10.1071/AJ19026
  56. Souche, A.; Schmid, D.W.; Rüpke, L. (2017). Interrelation between surface and basement heat flow in sedimentary basins. AAPG Bulletin, 101(10), 1697-1713. https://doi.org/10.1306/12051615176
  57. Stagg, H.M.J.; Colwell, J.B. (1994). The structural foundations of the northern Carnarvon Basin. The North West Shelf Symposium, Perth, Australia.
  58. Stagg, H.M.J.; Alcock, M.B.; Bernardel, G.; Moore, A.M.G.; Symonds, P.A.; Exon, N.F. (2004). Geological framework of the Outer Exmouth Plateau and adjacent ocean basins. Geoscience Australia Record.
  59. Sweeney, J.J.; Burnham, A.K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10), 1559-1570. https://doi.org/10.1306/0C9B251F-1710-11D7-8645000102C1865D
  60. Theissen, S.; Rüpke, L.H. (2010). Feedbacks of sedimentation on crustal heat flow: New insights from the Vøring Basin, Norwegian Sea. Basin Research, 22(6), 976-990. https://doi.org/10.1111/j.1365-2117.2009.00437.x
  61. Thomas, B.M.; Smith, D.N. (1974). A summary of the Petroleum Geology of the Carnarvon Basin. The AAPEA Journal, 14(1), 66-76. https://doi.org/10.1071/AJ73009
  62. Tissot, B.P.; Welte, D.H. (1984). Petroleum formation and occurence. Springer-Verlag. https://doi.org/10.1007/978-3-642-87813-8
  63. Veevers, J.J. (1971). Phanerozoic history of Western Australia related to continental drift. Journal of the Geological Society of Australia, 18(2), 87-96. https://doi.org/10.1080/00167617108728747
  64. Wangen, M. (1994). The blanketing effect in sedimentary basins. Basin Research, 7(4), 283-298. https://doi.org/10.1111/j.1365-2117.1995.tb00118.x
  65. Warpinski, N.R.; Branagan, P.; Wilmer, R. (1985). In situ Stress Measurements at US DOE’s Multiwell Experiment Site Mesaverde Group Rifle Colorado. Journal of Petroleum Technolology, 37(3), 527-536. https://doi.org/10.2118/12142-PA
  66. Weingarten, J.S.; Perkins, T.K. (1995). Prediction of sand production in gas wells: methods and Gulf of Mexico case studies. Journal of Petroleum Technology, 47(7), 596-600. https://doi.org/10.2118/24797-PA