Vol. 44 No. 3 (2022): Boletín de Geología
Artículos científicos

Provenance of the El Cerrito Formation in the San Jacinto Folded Belt: Paleogeographic implications for the colombian Caribbean

Valentina Vargas-González
Universidad de Caldas
Andrés Pardo-Trujillo
Universidad de Caldas
Nelson Fabián Gallego-Bañol
Universidad de Caldas
Sergio Andrés Restrepo-Moreno
Universidad Nacional de Colombia
Bio
Jaime Andrés Muñoz-Valencia
Universidad de Caldas

Published 2022-10-26

Keywords

  • Northern Andes,
  • Age U/PB Zircon,
  • Conventional petrography,
  • Heavy minerals,
  • Upper Miocene

How to Cite

Vargas-González, V., Pardo-Trujillo, A., Gallego-Bañol, N. F., Restrepo-Moreno, S. A., & Muñoz-Valencia, J. A. (2022). Provenance of the El Cerrito Formation in the San Jacinto Folded Belt: Paleogeographic implications for the colombian Caribbean. Boletín De Geología, 44(3), 39–63. https://doi.org/10.18273/revbol.v44n3-2022002

Altmetrics

Abstract

A provenance study of an Upper-Miocene sedimentary sequence drilled by the ANH-Los Pájaros-1X well was carried out to unravel the sediment sources and sedimentary environments of the San Jacinto Folded Belt. Our findings indicate that the sequence studied was deposited in deltaic systems that oscillated between prodelta-front and delta plain environments. The average ratio of sandstones samples is Q36F24L40; where the lithics identified correspond to andesites, quartzites, shales, granites, mudstones and sandstones, which indicates multiple sources of detrital materials delivered into the basin by a complex fluvial network. Analyses of heavy minerals show a high proportion of hornblende and pyroxene, perhaps implying an igneous source. The minor content of apatite, biotite, muscovite, tourmaline, and zircon suggests a provenance related to felsic igneous rocks, although intermediate plutonic and volcanics or metamorphic rocks cannot be discarded. The maximum deposition age given by the U/Pb dates indicates that the sedimentary sequence is not older than the late Miocene (9.7-9.1 Ma), which allows a stratigraphic correlation with the El Cerrito Formation. According to available paleogeographic reconstructions for this period, large rivers, and deltaic systems prograded towards NW of Colombia. The main sources of sediments were thus located to the south in the Central and Western cordillera, as well as in paleo-highs of the Lower Magdalena Valley associated with tectonic environments of magmatic arcs and recycled orogens. Contribution of sediments with geochronologic signatures typical of rocks with Panama-Choco Block affinity seem to be evidenced by detrital U/Pb ages between 43.4-40.7 Ma. On the other hand, the frequent presence of late Miocene zircons, together with the high proportion of volcanic lithics suggest the influence of magmatic activity from the Western Cordillera and the Cauca river trough.

Downloads

Download data is not yet available.

References

  1. ANH-Universidad de Caldas. (2009). Estudio integrado de los núcleos y registros obtenidos de los pozos someros tipo “Slim holes” en la Cuenca del Sinú. Informe Final. Tomos I y II.
  2. ANH-Universidad de Caldas. (2011). Estudio integrado de los núcleos y registros obtenidos de los pozos someros tipo “Slim holes” perforados por la ANH. Informe Final.
  3. ANH-Universidad de Caldas. (2016). Estratigrafía del Cretácico Superior - Paleógeno del sector Sinú - San Jacinto, Caribe Colombiano: Aporte al conocimiento de su evolución geológica y sistemas petrolíferos. Informe Final.
  4. ANH-Universidad de Caldas. (2020a). Integración geológica, evaluación de los sistemas petrolíferos y prospectividad de las cuencas frontera de Colombia: cuencas Urabá, Sinú-San Jacinto y subcuenca San Jorge (VIM). Informe de integración.
  5. ANH-Universidad de Caldas. (2020b). Evolución geológica, sistemas petrolíferos y prospectividad del gas en la Subcuenca Plato (Valle Inferior del Magdalena-VIM). Informe de integración.
  6. Ayala-Calvo, R.; Bayona-Chaparro, G.; Ojeda-Marulanda, C.; Cardona, A.; Valencia, V.; Padrón, C.; Yoris, F.; Mesa-Salamanca, J.; García, A. (2009). Estratigrafía y procedencia de las unidades comprendidas entre el Campaniano y el Paleógeno en la subcuenca de Cesar: aportes a la evolución tectónica del área. Geología Colombiana, 34, 3-34.
  7. Barbosa-Espitia, A.; Foster, D.; Restrepo, S.; Botero, M.; Min, K.; Pardo, A. (en revisión). Erosional Exhumation of the NW South American Continental Margin Initiated by Caribbean Plate Subduction and Accretion of the Panama Arc. Tectonics.
  8. Basu, A.; Young, S.W.; Suttner, L.J.; James, L.J.; Mack, G.H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research, 45(4), 873-882. https://doi.org/10.1306/212F6E6F-2B24-11D7-8648000102C1865D
  9. Bayona, G.; Lamus-Ochoa, F.; Cardona, A.; Jaramillo, C.; Montes, C.; Tchegliakova, N. (2007). Procesos orogénicos del Paleoceno para la cuenca de Ranchería (Guajira, Colombia) y áreas adyacentes definidos por análisis de procedencia. Geología Colombiana, 32, 21-46.
  10. Bayona, G.; Cardona, A.; Jaramillo, C.; Mora, A.; Montes, C.; Valencia, V.; Ayala, C.; Montenegro, O.; Ibáñez-Mejía, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau-continent convergence. Earth and Planetary Science Letters, 331-332, 97-111. https://doi.org/10.1016/j.epsl.2012.03.015
  11. Bernal-Olaya, R.; Mann, P.; Escalona, A. (2015). Cenozoic Tectonostratigraphic Evolution of the Lower Magdalena Basin, Colombia: An Example of an Under- to Overfilled Forearc Basin. In: C. Bartolini, P. Mann (eds.). Petroleum geology and potential of the Colombian Caribbean Margin (pp. 345-398). AAPG Memoir, vol. 108. https://doi.org/10.1306/13531943M1083645
  12. Borrero, C.; Toro-Toro, L.M. (2016). Vulcanismo de afinidad adaquítica en el miembro inferior de la Formación Combia (Mioceno tardío) al sur de la subcuenca de Amagá, noroccidente de Colombia. Boletín de Geología, 38(1), 87-100. https://doi.org/10.18273/revbol.v38n1-2016005
  13. Caballero, V.; Mora, A.; Quintero, I.; Blanco, V.; Parra, M.; Rojas, L.E.; López, C.; Sánchez, N.; Horton, B.K.; Stockli, D.; Duddy, I. (2013). Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 315-342. https://doi.org/10.1144/SP377.12
  14. Cáceres, C.; de Porta, J. (1972). Contribution a la géologie de la Serranía de San Jacinto entre Toluviejo et Chalán, Colombie, S.A. C.R.S. Société Géologique de France.
  15. Cardona, A.; Valencia, V.; Weber, M.; Duque, J.; Montes, C.; Ojeda, G.; Reiners, P.; Domanik, K.; Nicolescu, S.; Villagómez, D. (2011). Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, northern Colombia. Geologica Acta, 9(3-4), 445-466. https://doi.org/10.1344/105.000001739
  16. Cardona, A.; Montes, C.; Ayala, C.; Bustamante, C.; Hoyos, N.; Montenegro, O.; Ojeda, C.; Niño, H.; Ramírez, V.; Valencia, V.; Rincón, D.; Vervoort, J.; Zapata, S. (2012). From arccontinent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary. Tectonophysics, 580, 58-87. https://doi.org/10.1016/j.tecto.2012.08.039
  17. Cardona, A.; León, S.; Jaramillo, J.S.; Valencia, V.; Zapata, S.; Pardo-Trujillo, A.; Schmitt, A.K.; Mejía, D.; Arenas, J.C. (2020). Cretaceous record from a Mariana– to an Andean– type margin in the Central Cordillera of the Colombian Andes. In: J. Gómez, A.O. Pinilla-Pachón (eds.). The Geology of Colombia (pp. 353-395). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.10
  18. Cediel, F.; Shaw, R.P.; Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. In: C. Bartolini, R.T. Buffler, J. Blickwede (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (pp. 815-848). AAPG, vol.79. https://doi.org/10.1306/M79877C37
  19. Clavijo, J.; Barrera, R. (2001). Geología de la Plancha 44 Sincelejo y 52 Sahagún. Memoria explicativa. Escala 1:100.000,17-48. INGEOMINAS. Bogotá.
  20. Díaz-Jaramillo, A.D. (2017). Palinología del pozo ANH-Los Pájaros-1X (Cinturón de San Jacinto, Caribe colombiano): reconstrucción de la historia de la vegetación y de los cambios en el nivel relativo del mar durante el Mioceno Medio-Tardío. MSc. Tesis, Universidad de Caldas, Colombia.
  21. Dickinson, W.R. (1985). Interpreting provenance relations from detrital modes of sandstones. In: G.G. Zuffa (ed.). Provenance of arenites (pp. 333-361). Springer. https://doi.org/10.1007/978-94-017-2809-6_15
  22. Dickinson, W.R.; Gehrels, G.E. (2009). Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2), 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
  23. Dueñas, H.; Duque, H. (1981). Geología del cuadrángulo F-8, Planeta Rica. Boletín Geológico, 24(1), 1-35.
  24. Duque-Caro, H. (1973). Los foraminíferos planctónicos y el terciario de Colombia. Informe 1651, INGEOMINAS, Bogotá.
  25. Duque-Caro, H. (1979). Major structural elements and evolution of northwestern Colombia. In: J.S. Watkins, L. Montadert; P.W. Dickerson (eds.). Geological and Geophysical Investigations of Continental Margins (pp. 329-351). AAPG. https://doi.org/10.1306/M29405C22
  26. Duque-Caro, H. (1984). Structural style, diapirism, and accretionary episodes of the Sinú-San Jacinto terrane, Southwestern Caribbean Borderland. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.). The Caribbean-South American Plate Boundary and Regional Tectonics (pp. 303-316). Geological Society of America Memoirs, vol. 162. http://doi.org/10.1130/MEM162-p303
  27. Duque-Palacio, S.; Seward, D.; Restrepo-Moreno, S.A.; García-Ramos, D. (2021). Timing and rates of morpho-tectonic events in a segment of the Central and Western cordilleras of Colombia revealed through low-temperature thermochronology. Journal of South American Earth Sciences, 106, 103085. https://doi.org/10.1016/j.jsames.2020.103085
  28. Duque-Trujillo, J.; Bustamante, C.; Solari, L.; Gómez-Mafla, Á.; Toro-Villegas, G.; Hoyos, S. (2019). Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. https://doi.org/10.5027/andgeov46n1-3120
  29. Farris, D.W.; Jaramillo, C.; Bayona, G.; Restrepo-Moreno, S.A.; Montes, C.; Cardona, A.; Mora, A.; Speakman, R.J.; Glascock, M.D.; Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007-1010. https://doi.org/10.1130/G32237.1
  30. Folk, R.L. (1974). Petrology of the sedimentary rocks. Hemphill Publishing Company.
  31. GEOTEC. (2003). Geología de los cinturones Sinú - San Jacinto. Planchas 50, 51 59, 60, 61, 69, 70, 71, 79, 80. GEOTEC Ltda-INGEOMINAS, Bogotá.
  32. Gómez, J.; Montes, N.E.; Nivia, Á.; Diederix, H.; compiladores. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000. Servicio Geológico Colombiano, Bogotá.
  33. González, H. (2001). Mapa Geológico del Departamento de Antioquia. Secretaría del Medio Ambiente, Colombia.
  34. Guzmán, G.; Gómez, E.; Serrano, B.E. (2004). Geología de los cinturones del Sinú, San Jacinto y borde occidental del Valle Inferior del Magdalena. Caribe colombiano. Escala 1:300.000. INGEOMINAS, Bogotá.
  35. Guzmán, G. (2007). Stratigraphy and sedimentary environment and implications in the Plato Basin and the San Jacinto Belt Northwestern Colombia. PhD. Thesis, University of Liége, Belgium.
  36. Herold, N.; Müller, R.D.; Seton, M. (2010). Comparing early to middle Miocene terrestrial climate simulations with geological data. Geosphere, 6(6), 952-961. https://doi.org/10.1130/GES00544.1
  37. Horton, B.K.; Saylor, J.E.; Nie, J.; Mora, A.; Parra, M.; Reyes-Harker, A.; Stockli, D.F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. GSA Bulletin, 122(9-10), 1423-1442. https://doi.org/10.1130/B30118.1
  38. Horton, B.K.; Anderson, V.J.; Caballero, V.; Saylor, J.E.; Nie, J.; Parra, M.; Mora, A. (2015). Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere, 11(6), 1790-1811. https://doi.org/10.1130/GES01251.1
  39. Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. (1984). The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1), 103-116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
  40. Jaramillo, C.; Rueda, M.; Torres, V. (2011). A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. Palynology, 35(1), 46-84. http://doi.org/10.1080/01916122.2010.515069
  41. Jaramillo, J.S.; Cardona, A.; León, S.; Valencia, V.; Vinasco, C. (2017). Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35′ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76, 460-481. https://doi.org/10.1016/j.jsames.2017.04.012
  42. Kochelek, E.J.; Amato, J.M.; Pavlis, T.L.; Clift, P.D. (2011). Flysch depositional and preservation of coherent bedding in an accretionary complex. Detrital zircon ages from the Upper Cretaceous Valdez Group, Chugach terrane, Alaska. Lithosphere, 3(4), 265-274. https://doi.org/10.1130/L131.1
  43. Lara, M.; Salazar-Franco, A.M.; Silva-Tamayo, J.C. (2018). Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373, 147-162. https://doi.org/10.1016/j.sedgeo.2018.06.003
  44. Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the colombian Andes: A tectono/magmatic approach. Tesis doctoral, Universitat de Barcelona, Barcelona, España.
  45. Leisen, M.; Barra, F.; Romero, R.; Morata, D.; Reich, M. (2015). Geocronología U-Pb de circones mediante ablación láser acoplado a un ICP-MS muticolector: metodología utilizada en el Laboratorio de Geoquímica Isotópica del Centro Fondap CEGA, Universidad de Chile. XIV Congreso Geológico Chileno, La Serena, Chile.
  46. Mange, M.A.; Maurer, H.F.W. (1992). Heavy minerals in colour. 1st ed. Chapman y Hall.
  47. Mantilla-Pimiento, A.M.; Jentzsch, G.; Kley, J.; Alfonso-Pava, C. (2009). Configuration of the Colombian Caribbean Margin: Constraints from 2D Seismic Reflection data and Potential Fields Interpretation. In: S. Lallemand, F. Funiciello (eds.). Subduction Zone Geodynamics (pp. 247-271). Springer. https://doi.org/10.1007/978-3-540-87974-9_13
  48. Montes, C.; Guzman, G.; Bayona, G.; Cardona A.; Valencia, V.; Jaramillo, C. (2010). Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. Journal of South American Earth Sciences, 29(4), 832-848. https://doi.org/10.1016/j.jsames.2009.07.010
  49. Montes, C.; Bayona, G.; Cardona, A.; Buchs, D.M.; Silva, C.A.; Morón, S.; Hoyos, N.; Ramírez, D.A.; Jaramillo, C.A.; Valencia, V. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008959
  50. Montes, C.; Cardona, A.; Jaramillo, C.; Pardo, A.; Silva, J.C.; Valencia, V.; Ayala, C.; Pérez-Angel, L.C.; Rodríguez-Parra, L.A.; Ramírez, V.; Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science, 348(6231), 226-229. https://doi.org/10.1126/science.aaa2815
  51. Montes, C.; Silva, C.A.; Bayona, G.A.; Villamil, R.; Stiles, E.; Rodríguez-Corcho, A.F.; Beltrán-Triviño, A.; Lamus, F.; Muñoz-Granados, M.D.; Pérez-Angel, L.C.; Hoyos, N.; Gómez, S.; Galeano, J.J.; Romero, E.; Baquero, M.; Cardenas-Rozo, A.L.; von Quadt, A. (2021). A Middle to Late Miocene Trans-Andean Portal: Geologic Record in the Tatacoa Desert. Frontiers in Earth Science. https://doi.org/10.3389/feart.2020.587022
  52. Mora, A.; Reyes-Harker, A.; Rodríguez, G.; Tesón, E.; Ramírez-Arias, J.C.; Parra, M.; Caballero V.; Mora, J.P.; Quintero, I.; Valencia, V.; Ibáñez, M.; Horton, B.K.; Stockli, D.F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publication, 377, 411-442. https://doi.org/10.1144/SP377.6
  53. Mora, J.A.; Oncken, O.; Le Breton, E.; Mora, A.; Veloza, G.; Vélez, V.; de Freitas, M. (2018). Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97, 288-310. https://doi.org/10.1016/j.marpetgeo.2018.06.032
  54. Noriega-Londoño, S.; Restrepo-Moreno, S.A.: Vinasco, C.; Bermúdez, M.A.; Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351, 106890. https://doi.org/10.1016/j.geomorph.2019.106890
  55. O’Dea, A.; Lessios, H.A.; Coates, A.G.; Eytan, R.I.; Restrepo-Moreno, S.A.; Cione, A.L.; Collins, L.S.; De Queiroz, A.; Farris, D.W.; Norris, R.D.; Stallard, R.F.; Woodburne, M.O.; Aguilera, O.; Aubry, M.P.; Berggren, W.A.; Budd, A.F.; Cozzuol, M.A.; Coppard, S.E.; Duque-Caro, H.; Finnegan, S.; Gasparini, G.; Grossman, E.L.; Johnson, K.G.; Keigwin, L.D.; Knowlton, N.; Leigh, E.G.; Leonard-Pingel, J.S.; Marko, P.B.; Pyenson, N.D.; Rachello-Dolmen, P.G.; Soibelzon, E.; Soibelzon, L.; Todd, J.A.; Vermeij, G.J.; Jackson, J.B.C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), 1-12. https://doi.org/10.1126/sciadv.1600883
  56. Osorio-Granada, E.; Pardo-Trujillo, A.; Restrepo-Moreno, S.A.; Gallego, F.; Muñoz, J.; Plata, A.; Trejos-Tamayo, R.; Vallejo, F.; Barbosa-Espitia, A.; Cardona-Sánchez, F.J.; Foster, D.A.; Kamenov, G. (2020). Provenance of Eocene-Oligocene sediments in the San Jacinto Fold Belt: Paleogeographic and geodynamic implications for the northern Andes and the southern Caribbean. Geosphere, 16(1), 210-228. https://doi.org/10.1130/GES02059.1
  57. Pardo-Trujillo, A.; Mora, C.; Gallego, N.F.; Rendón, L.; Arenas, A.; Echeverry, S.; Osorno, J.F. (2020). Potencial petrolífero en la sub-cuenca Plato (Valle Inferior del Magdalena, Caribe colombiano). ANH PLAN 2020. Aportes a la exploración de hidrocarburos en Colombia.
  58. Parra, M.; Echeverri, S.; Patiño, A.M.; Ramírez, J.C.; Mora, A.; Sobel, E.R.; Almendral, A; Pardo-Trujillo, A. (2020). Cenozoic evolution of the Sierra Nevada de Santa Marta, Colombia. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 185-213). Volume 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.07
  59. Pettijohn, F.J.; Potter, P.E.; Siever, R. (1973). Sand and Sandstones. Springer.
  60. Pindell, J.; Kennan, L. (2001). Kinematic Evolution of the Gulf of Mexico and Caribbean. In: R.H. Fillon, N.C. Rosen, P. Weimer, A. Lowrie, H. Pettingill, R.L. Phair, H.H. Roberts, H.H van Hoom (eds.). Petroleum Systems of Deep-Water Basins: Global and Gulf of Mexico Experience (pp. 193-220) GCS. https://doi.org/10.5724/gcs.01.21.0193
  61. Pindell, J.; Kennan, L.; Maresch, W.V.; Stanek, K.P.; Draper, G.; Higgs, R. (2005). Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic controls on basin development in Proto-Caribbean margins. In: H.G.A. Lallemant, V.B. Sisson (eds.). Caribbean-South American plate interactions, Venezuela (pp. 7-52). Geological Society of America, vol. 394. https://doi.org/10.1130/0-8137-2394-9.7
  62. Pindell, J.; Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society, London, Special Publication, 328, 1-55. https://doi.org/10.1144/SP328.1
  63. Ramírez, D.A.; López, A.; Sierra, G.M.; Toro, G.E. (2006). Edad y proveniencia de las rocas volcánico sedimentarias de la Formación Combia en el suroccidente antioqueño Colombia. Boletín de Ciencias de la Tierra, 19, 9-26.
  64. Ramírez, D.A.; Foster, D.A.; Min, K.; Montes, C.; Cardona, A.; Sadove, G. (2016). Exhumation of the Panama basement complex and basins: Implications for the closure of the Central American seaway. Geochemistry, Geophysics, Geosystems, 17(5), 1758-1777. https://doi.org/10.1002/2016GC006289
  65. Restrepo-Moreno, S.A.; Foster, D.A; Kamenov, G. (2007). Formation age and magma sources for the Antioqueño Batholith derived from LA–ICP–MS uranium–lead dating and hafnium–isotope analysis of zircon grains. GSA Meeting, Denver.
  66. Restrepo-Moreno, S.A.; Foster, D.A.; Stockli, D.F.; Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
  67. Restrepo-Moreno, S.; Min, K.; Bernet, M.; Barbosa, A.; Marín-Cerón, M.; Juliana, J.; Hardwick, E.; Pardo, A. (2013). Thermotectonic history of the Farallones del Citará batholith (Colombia’s Western Cordillera) through multi-system, vertical profile thermochronology/geochronology: tectonic, geomorphic and climatic implications. XIV Congreso Colombiano de Geología, Bogotá, Colombia. https://doi.org/10.13140/RG.2.2.23860.86409
  68. Restrepo-Moreno, S.A.; Foster, D.A.; Bernet, M.; Min, K.; Noriega, S. (2019). Morphotectonic and orogenic development of the northern Andes of Colombia: A low-temperature thermochronology perspective. In: F. Cediel, R.P. Shaw (eds.). Geology and Tectonics of Northwestern South America (pp. 749-832). Springer. https://doi.org/10.1007/978-3-319-76132-9_11
  69. Rodríguez, G.; Zapata, G. (2012). Características del plutonismo Mioceno superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente colombiano. Boletín de Ciencias de la Tierra, 31, 5-22.
  70. Rodríguez, G.; Arango, M.I. (2013). Formación Barroso: Arco volcánico toleitico y Diabasas de San José de Urama: Un prisma acrecionario T-Morb en el segmento norte de la Cordillera Occidental de Colombia. Boletín de Ciencias de la Tierra, 33, 17-38.
  71. Rodríguez, G.; Bermúdez, J.G.; Zapata, G.; Arango, M.I.; Arenas, J.E. (2013). Cartografía geológica de la plancha 62 la Ye, departamentos de Córdoba y Sucre. Servicio Geológico Colombiano.
  72. Rodríguez, G.; Zapata, G. (2014). Descripción de una nueva unidad de lavas denominada Andesitas basálticas de El Morito - correlación regional con eventos magmáticos de arco. Boletín de Geología, 36(1), 85-102.
  73. Salazar-Ortiz, E.A.; Rincón-Martínez, D.; Páez, L.A.; Restrepo, S.M.; Barragán, S. (2020). Middle Eocene mixed carbonate-siliciclastic systems in the southern Caribbean (NW colombian margin). Journal of South American Earth Sciences, 99, 102507. https://doi.org/10.1016/j.jsames.2020.102507
  74. Scholz, S.R.; Petersen, S.V.; Escobar, J.; Jaramillo, C.; Hendy, A.J.W.; Allmon, W.D.; Curtis, J.H.; Anderson, B.M.; Hoyos, N.; Restrepo, J.C.; Perez, N. (2020). Isotope sclerochronology indicates enhanced seasonal precipitation in northern South America (Colombia) during the Mid-Miocene Climatic Optimum. Geology, 48(7), 668-672. https://doi.org/10.1130/G47235.1
  75. Silva-Arias, A.; Páez-Acuña, L.A.; Gómez-Gutiérrez, P.D.; Rincón-Martínez, D.A. (2019). Estudio petrográfico y posibles fuentes de los clastos basales de la Formación San Cayetano hacia el sur del Cinturón Plegado de San Jacinto, norte de Colombia. Boletín de Geología, 41(1), 15-28. https://doi.org/10.18273/revbol.v41n1-2019001
  76. Tortosa, A.; Palomares, M.; Arribas, J. (1988). Tipologías de cuarzo como indicadores de la procedencia en areniscas: excepciones al método de Basu et al. (1975). Estudios Geológicos, 44(5-6), 385-390. https://doi.org/10.3989/egeol.88445-6554
  77. Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. (2011a). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
  78. Villagómez, D.; Spikings, R.; Mora, A.; Guzmán, G.; Ojeda, G.; Cortés, E.; Van Der Lelij, R. (2011b). Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30(4). https://doi.org/10.1029/2010TC002835
  79. Villagómez, D.; Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160-161, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008
  80. Villamil, T. (1999). Campanian-Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1-4), 239-275. https://doi.org/10.1016/S0031-0182(99)00075-9
  81. Vinasco, C.J.; Cordani, U.G.; González, H.; Weber, M.; Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007
  82. Weber, M.; Gómez-Tapias, J.; Duarte, E.; Cardona, A.; Vinasco-Vallejo, C.J. (2011). Geochemistry of the Santa Fe Batholith in NW Colombia: Remnant of an accreted Cretaceous arc. XIV Congreso Latinoanericano de Geología, Medellín, Colombia. https://doi.org/10.13140/RG.2.2.32151.57769
  83. Zapata, S.; Weber, M.; Cardona, A.; Valencia, V.; Guzmán, G.; Tobón, M. (2010). Provenance of oligocene conglomerates and associated sandstones from the Siamaná Formation, Serranía de Jarara, Guajira, Colombia: implications for Oligocene Caribbean-South American Tectonics. Boletín de Ciencias de la Tierra, 27, 7-24.
  84. Zapata, G.; Rodríguez, G. (2011). Basalto de El Botón, arco volcánico mioceno de afinidad shoshonítica al norte de la cordillera occidental de Colombia. Boletín de Ciencias de la Tierra, 30, 77-92.
  85. Zapata-García, G.; Rodríguez-García, G. (2020). New contributions to the knowledge about the Chocó–Panamá Arc in Colombia, including a new segment south of Colombia. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 417-450). Volume 3, Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.14
  86. Zapata-Villada, J.P.; Restrepo, J.J.; Cardona-Molina, A.; Martens, U. (2017). Geoquímica y geocronología de las rocas volcánicas básicas y el Gabro de Altamira, Cordillera Occidental (Colombia): Registro de ambientes de plateau y arco oceánico superpuestos durante el cretácico. Boletín de Geología, 39(2), 13-30. https://doi.org/10.18273/revbol.v39n2-2017001