Vol. 45 No. 1 (2023): Boletín de Geología
Artículos científicos

The geometry and dimensions of columnar jointing structures in volcanic rocks of Colombia

Camilo E. Calderón
Servicio Geológico Colombiano
John J. Sánchez
Universidad Nacional de Colombia

Published 2023-02-28

Keywords

  • Hexagonality index,
  • Maturity,
  • Homogeneity,
  • Ordering,
  • Heat dissipation

How to Cite

Calderón, C. E., & Sánchez, J. J. (2023). The geometry and dimensions of columnar jointing structures in volcanic rocks of Colombia. Boletín De Geología, 45(1), 37–51. https://doi.org/10.18273/revbol.v45n1-2023002

Altmetrics

Abstract

Columnar jointing structures in volcanic rocks correspond to the joint pattern that results from the contraction and deformation of materials during post-emplacement cooling. Data of 394 polygons in fourteen outcrops of volcanic rocks with columnar jointing in Colombia were visually inspected, and 349 polygons were defined by image processing with computer scripts. These polygonal geometries, along with the relative variations of the sizes of columns were used to estimate the homogeneity, order, and maturity of the jointing patterns. The relationship between stria size and column width was used to approximate the dominant heat transfer mechanism during the emplacement of lavas and pyroclastic density currents (PDC) deposits. Visual inspection of outcrops reveals that the hexagonal geometry dominates in lavas, whereas in PDC, the dominant geometries are pentagons and tetragons. Computational processing indicates that in general, columnar jointing in Colombia tends to be the optimal hexagonal organization, although other orders are observed. It is found that the Cristales outcrop, located on the southeastern flank of Nevado del Ruiz volcano, in the Cordillera Central, shows the highest degree of maturity; Domo Victoria, a monogenetic volcano in the Cordillera Central, has the most homogeneity, and Los Ataúdes site, on the eastern flank of Cordillera Occidental, is the most ordered. Striae sizes are usually 10-25% of column widths. Values of Péclet number in the range 0.28-0.41 indicate that heat transfer by conduction dominated during lava emplacement, although heat dissipation by joint-aided convection cannot be discarded.

Downloads

Download data is not yet available.

References

  1. Alarcón, E.; Murcia, H.; Borrero, C.; Arnosio, M. (2020). Evidence for welding of a block and ash pyroclastic flow deposit: the case of Cerro Bravo Volcano, Colombia. Bulletin of Volcanology, 82(1). https://doi.org/10.1007/s00445-019-1334-5
  2. Álvarez-Gutiérrez, Y.; Amaya-López, C.; Barbosa-Mejía, L.N.; Builes-Carvajal, J.S.; Henao-Casas, J.D.; Montoya-Cañola, S.M.; Pacheco-Sintura, P.A.; Ramírez-Hoyos, L.F.; Urrego-Osorio, S.; Zapata-Montoya, A.M.; Ordóñez-Carmona, O.; Restrepo-Álvarez, J.J. (2014). Descripción e interpretación geológica de las islas de Providencia y Santa Catalina. Boletín de Ciencias de la Tierra, 35, 67-81. https://doi.org/10.15446/rbct.n35.39257
  3. Aydin, A.; DeGraff, J. (1988). Evolution of polygonal fracture patterns in lava flows. Science, 239(4839), 471-476. https://doi.org/10.1126/science.239.4839.471
  4. Bakewell, R. (1813). An introduction to geology. Kessinger Publishing.
  5. Barrero, D.; Vesga, C. (1976). Geología del cuadrángulo K-9 Armero y J-9 La Dorada. Mapa geológico a escala 1.100.00, INGEOMINAS.
  6. Budkewitsch, P.; Robin, P. (1994). Modelling the evolution of columnar joints. Journal of Volcanology and Geothermal Research, 59(3), 219-239. https://doi.org/10.1016/0377-0273(94)90092-2
  7. Calderón, C.; Flórez, D.; Sánchez, J. (2017). Mecanismos geofísicos de formación de diaclasas columnares en rocas volcánicas: casos de estudio en Colombia. XVI Congreso Colombiano de Geología, Santa Marta, Colombia.
  8. Calderón, C. (2021). Mecanismos geofísicos de formación de diaclasas columnares en rocas volcánicas: casos de estudio en Colombia. Tesis de maestría, Universidad Nacional de Colombia, Bogotá, Colombia.
  9. Ceballos-Hernández, J.A.; Martínez-Tabares, L.M.: Valencia-Ramírez, L.G.; Pulgarín-Alzate, B.A.; Correa-Tamayo, A.M.; Narváez-Marulanda, B.L. (2020). Geological evolution of the Nevado del Ruiz Volcanic Complex. In: J. Gómez, A. Pinilla-Pachón (eds.). The geology of Colombia (pp. 267-296). Volume 4. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.07
  10. Cepeda, H. (2000). Atlas de amenaza volcánica en Colombia. INGEOMINAS.
  11. Christensen, A.; Raufaste, C.; Misztal, M.; Celestini, F.; Guidi, M.; Ellegaard, C.; Mathiesen, J. (2016). Scale selection in columnar jointing: Insights from experiments on cooling stearic acid and numerical simulations. JGR Solid Earth, 121(3), 1462-1482. https://doi.org/10.1002/2015JB012465
  12. DeGraff, J.; Aydin, A. (1993). Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava. Journal of Geophysical Research: Solid Earth, 98(B4), 6411-6430. https://doi.org/10.1029/92JB01709
  13. Flórez, D.F. (2017). Descripción de rocas volcánicas con diaclasas columnares en varios sitios de Colombia. Trabajo de grado. Universidad Nacional de Colombia, Bogotá, Colombia.
  14. Forero, S. (2020). Caracterización morfológica de flujos de lavas con disyunción columnar en cercanías a Santa Rosa de Cabal, Risaralda. Trabajo de grado. Universidad Nacional de Colombia, Bogotá, Colombia.
  15. Forero, S.; Sánchez, J. (2021). Caracterización morfológica de flujos de lavas con disyunción columnar en cercanías a Santa Rosa de Cabal, Risaralda. XVIII Congreso Colombiano de Geología, Medellín, Colombia.
  16. Goehring, L.; Morris, S. (2005). Order and disorder in columnar joints. Europhysics Letters, 69(5), 739-745. https://doi.org/10.1209/epl/i2004-10408-x
  17. Goehring, L.; Morris, S.W.; Lin, Z. (2006). Experimental investigation of the scaling of columnar joints. Physical Review E, 74(3), 036115. https://doi.org/10.1103/PhysRevE.74.036115
  18. Goehring, L. (2008). On the scaling and ordering of columnar joints. PhD. Thesis, University of Toronto, Toronto, Canadá.
  19. Goehring, L.; Nakahara, A.; Dutta, T.; Kitsunezaki, S.; Tarafdar, S. (2015). Desiccation cracks and their patterns: Formation and modelling in science and nature. Wiley-VCH.
  20. González, H. (2001). Geología de las planchas 206 Manizales y 225 Nevado del Ruiz. Memoria explicativa. INGEOMINAS.
  21. González, H.; Zapata, G.; Montoya, D. (2002). Geología y geomorfología de la plancha 428 Túquerres. Departamento de Nariño. Memoria explicativa, INGEOMINAS.
  22. González, H.; Zapata, G. (2003). Geología de la plancha 428 Túquerres. Escala 1:100.000. INGEOMINAS.
  23. Gray, N.; Anderson, J.; Devine, J.; Kwasnik, J. (1976). Topological properties of random crack networks. Journal of the International Association for Mathematical Geology, 8(6), 617-627. https://doi.org/10.1007/BF01031092
  24. Grossenbacher, K.; McDuffie, S. (1995). Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. Journal of Volcanology and Geothermal Research, 69(1-2), 95-103. https://doi.org/10.1016/0377-0273(95)00032-1
  25. Hetényi, G.; Taisne, B.; Garel, F.; Médard, E.; Bosshard, S.; Mattsson, H. (2012). Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology, 74(2), 457-482. https://doi.org/10.1007/s00445-011-0534-4
  26. Hofmann, M.; Anderssohn, R.; Bahr, H.A.; Weib, H.J.; Nellesen, J. (2015). Why hexagonal basalt columns? Physical Review Letters, 115, 154301. https://doi.org/10.1103/PhysRevLett.115.154301
  27. Li, Y.; Liu, J. (2020). Late Cenozoic columnar-jointed basaltic lavas in eastern and southeastern China: morphologies, structures, and formation mechanisms. Bulletin of Volcanology, 82(7), 58. https://doi.org/10.1007/s00445-020-01397-1
  28. Lim, C.; Huh, M.; Yi, K; Lee, C. (2015). Genesis of the columnar joints from welded tuff in Mount Mudeung National Geopark, Republic of Korea. Earth, Planets and Space, 67, 152. https://doi.org/10.1186/s40623-015-0323-y
  29. Marquínez, G.; Morales, C.; Caicedo, J. (2002). Mapa geológico de Colombia. Geología de la plancha 344 Tesalia. Memoria explicativa. INGEOMINAS.
  30. Marquínez, G.; Morales, C.; Núñez, A. (2006). Geología de la plancha 344 Tesalia. Escala 1:100.000. INGEOMINAS.
  31. Martínez, L.; Valencia, L.; Ceballos, J.; Narváez, B.; Pulgarín. B.; Correa, A.; Navarro, S.; Murcia, H.; Zuluaga, I.; Rueda, J.; Pardo, N. (2014). Geología y estratigrafía del Complejo Volcánico Nevado del Ruiz. Servicio Geológico Colombiano.
  32. McCourt, W. (1984). Geología de la Cordillera Central del Departamento del Valle del Cauca, Quindío y N.W Tolima. Planchas 243, 261, 262, 280, y 300. Memoria explicativa. INGEOMINAS.
  33. McCourt, W.; Millward, D.; Espinosa, A. (1984). Geología de la plancha 280 Palmira. Escala 1:100.000. INGEOMINAS.
  34. Méndez-Fajury, R.A. (1989). Catálogo de los volcanes activos en Colombia. Boletín Geológico, 30(3), 1-75. https://doi.org/10.32685/0120-1425/bolgeol30.3.1989.165
  35. Monsalve, M. (1991). Mapa preliminar de amenaza volcánica del volcán Cerro Bravo. INGEOMINAS.
  36. Mosquera, D.; Marín, P.; Vesga, C.; González, H. (1998). Geología de la plancha 206 Manizales. Escala 1:100.000. INGEOMINAS.
  37. Naranjo-Henao, J.L; Ríos-Alzate, P.A. (1989). Geología de Manizales y sus alrededores y su influencia en los riesgos geológicos. Revista Universidad de Caldas, 10(1-3), 1-113.
  38. O’Reilly, J. (1879). Explanatory notes and discussion of the nature of the prismatic forms of a group of columnar basalts, Giant’s Causeway. The Transactions of the Royal Irish Academy, 26, 641-734.
  39. Osorio, P.; Botero-Gómez, L.A.; Murcia, H.; Borrero, C.; Grajales, J.A. (2018). Campo Volcánico Monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (parte II): características composicionales. Boletín de Geología, 40(3), 103-123. https://doi.org/10.18273/revbol.v40n3-2018006
  40. Phillips, J.; Humphreys, M.; Daniels, K.; Brown, R.; Witham, F. (2013). The formation of columnar joints produced by cooling in basalt at Staffa, Scotland. Bulletin of Volcanology, 75(6), 715. https://doi.org/10.1007/s00445-013-0715-4
  41. Pulgarín-Alzate, B.A.; Tamayo-Alzate, M.; Correa-Tamayo, A.M.; Ceballos-Hernández, J.A.; Cruz-Toro, Y.P.; Méndez-Fajury, R. (2020). Stratigraphy and geological evolution of the Paramillo de Santa Rosa Volcanic Complex and its Pleistocene to Holocene eruptive history. En: J. Gómez, A. Pinilla-Pachón (eds.). The geology of Colombia (pp. 197-226). Volume 4. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.05
  42. Rave-Bonilla, Y. (2019). Estructuras de disyunción columnar en flujos de lava asociados al Complejo Volcánico Nevado del Ruiz en la vía Murillo-Manizales. Tesis, Universidad Nacional de Colombia, Bogotá, Colombia.
  43. Rave-Bonilla, Y.P.; Sánchez, J.J. (2021). Estructuras de disyunción columnar en lavas asociadas al Complejo Volcánico Nevado del Ruíz (Colombia): facies, dimensiones y geometría. Boletín de Geología, 43(2), 45-62. https://doi.org/10.18273/revbol.v43n2-2021003
  44. Ryan, M.; Sammis, C. (1978). Cyclic fracture mechanisms in cooling basalt. GSA Bulletin, 89(9), 1295-1308. https://doi.org/10.1130/0016-7606(1978)89<1295:CFMICB>2.0.CO;2
  45. Ryan, M.; Sammis, C. (1981). The glass transition in basalt. Journal of Geophysical Research: Solid Earth, 86(B10), 9519-9535. https://doi.org/10.1029/JB086iB10p09519
  46. Spry, A. (1962). The origin of columnar jointing, particularly in basalt flows. Journal of the Geological Society of Australia, 8(2), 191-216. https://doi.org/10.1080/14400956208527873
  47. Thouret, J.; Cantagrel, J.; Salinas, R.; Murcia, A. (1990). Quaternary eruptive history of Nevado del Ruiz (Colombia). Journal of Volcanology and Geothermal Research, 41(1-4), 225-251. https://doi.org/10.1016/0377-0273(90)90090-3
  48. Tomkeieff, S. (1940). The basalt lavas of the Giant’s Causeway district of Northern Ireland. Bulletin of Volcanology, 6(1), 89-143. https://doi.org/10.1007/BF02994875
  49. Torres, M.; Calvache, M.; Cortés, G.; Bernal, N.; Monsalve, M.; Cepeda, H. (2005). Mapa geológico Azufral. Escala 1:50.000. INGEOMINAS.
  50. Turcotte, D.; Schubert, G. (2002). Geodynamics. Cambridge University Press. Walker, J. (1986). Methods for going through a maze without becoming lost or confused. Scientific American, 255, 145-151. https://doi.org/10.1038/scientificamerican1286-140
  51. Woodell, D. (2012). Contraints on formation of columnar joints in basalt lava. MSc. Thesis, Universidad de Bristish Columbia, Canadá. https://doi.org/10.14288/1.0073476