Vol. 47 No. 1 (2025): Boletín de Geología
Artículos científicos

Exploration methods and geothermal systems in Colombia with emphasis on the Nevado del Ruiz volcano, Valle de Nereidas geothermal Project

Luis Alvaro Botero-Gómez
Universidad de Caldas
Hugo Murcia
Universidad de Caldas
John J. Sánchez
Universidad Nacional de Colombia
Martha Gabriela Gómez-Vasconcelos
Universidad Michoacana de San Nicolás de Hidalgo
Julián López Palacio
Central Hidroeléctrica de Caldas

Published 2025-05-06

Keywords

  • Renewable energy,
  • Geothermal prospecting,
  • Energy resources

How to Cite

Botero-Gómez, L. A., Murcia, H., Sánchez, J. J. ., Gómez-Vasconcelos, M. G., & López Palacio, J. (2025). Exploration methods and geothermal systems in Colombia with emphasis on the Nevado del Ruiz volcano, Valle de Nereidas geothermal Project. Boletín De Geología, 47(1), 63–91. https://doi.org/10.18273/revbol.v47n1-2025003

Altmetrics

Abstract

Geothermal conceptual models generally comprise four essential elements in convective geothermal systems: a heat source, a reservoir, a fluid source, and an impermeable rock. A comprehensive geothermal model is developed based on the available data at a given stage, which involves various studies such as geophysical surveys, heat anomaly mapping, geological analysis, and hydrochemical assessments. In Colombia, geothermal resources are predominantly associated with the active volcanic arc along the Central Cordillera, although non-volcanic areas also hold potential. The main application of geothermal energy in the country has been low-enthalpy systems, primarily for balneology and ecotourism. However, exploration efforts are currently underway to identify medium- to high-enthalpy systems with potential for electricity generation. This work outlines common methods in geothermal exploration and highlights the exploration progress in Colombia, with emphasis on the Nevado del Ruiz volcano as a case study for geothermal energy use. Additionally, this work demonstrates how in the most advanced project in the country, the Valle de Nereidas, on the western flank of the Nevado del Ruiz volcano, thermal springs have led to a high-enthalpy geothermal project. These hot springs are related to an increase in permeability in the rocks, associated with the interaction of fault systems in a NW-SE direction that are intersected by regional N-S faults such as the San Jerónimo fault. The circulation pattern of geothermal fluids in the area of interest is proposed to follow the SEE to the NWW, according to the structural pattern of the area related to the Nereidas-Río Claro fault system.

Downloads

Download data is not yet available.

References

  1. Agemar, T.; Schellschmidt, R.; Schulz, R. (2012). Subsurface temperature distribution in Germany. Geothermics, 44, 65-77. https://doi.org/10.1016/j.geothermics.2012.07.002
  2. Aguilera, P.; Alfaro, C.; Arcila-Rivera, A.; Blessent, D.; Rueda, J.; Llamosa, O. (2019). Colombia - A geothermal opportunity. 41st New Zealand Geothermal Workshop. Auckland, Nueva Zelanda.
  3. Aguilera-Bustos, J.P.; Taroni, M.; Adam, L. (2022). A robust statistical framework to properly test the spatiotemporal variations of the b‐Value: an application to the geothermal and volcanic zones of the Nevado del Ruiz volcano. Seismological Research Letters, 93(5), 2793-2803. https://doi.org/10.1785/0220220004
  4. Ahumada, M.F.; Sánchez, M.A.; Vargas, L.; Filipovich, R.; Martínez, P.; Viramonte, J.G. (2023). Joint interpretation of gravity and airborne magnetic data along the Calama-Olacapato-Toro fault system (Central Puna, NW Argentina): Structural and geothermal significance. Geothermics, 107, 102597. https://doi.org/10.1016/j.geothermics.2022.102597
  5. Aldana-Lozano, C.A. (2022). Caracterización geoquímica de la Formación La Cruz, Complejo Volcánico Las Ánimas, Nariño-Cauca, Colombia. Tesis de grado, Universidad de Los Andes, Colombia.
  6. Alfaro, C.; Aguirre, A.; Jaramillo, L.F. (2002). Inventario de fuentes termales en el Parque Nacional Natural de los Nevados. Ministerio de Minas y Energía, INGEOMINAS, Bogotá, 101.
  7. Alfaro, C.; Garzón, G.; Bobadilla, L. (2008). Geoquímica preliminar de gases del sistema geotérmico del volcán Azufral. Geología Colombiana, 33, 91-98.
  8. Alfaro, C.; Velandia, F.; Cepeda, H.; Pardo, N. (2010). Preliminary conceptual model of the Paipa geothermal system, Colombia. World Geothermal Congress. Bali, Indonesia.
  9. Alfaro, C.; Ponce, P.; Monsalve, M.L.; Ortiz, I.; Franco, J.V.; Ortega, A.; Torres, R.; Gómez, D. (2015). A preliminary conceptual model of Azufral geothermal system, Colombia. World Geothermal Congress. Melbourne, Australia.
  10. Alfaro, C.; Matiz, J.C.; Rueda, J.; Rodríguez, G.; González, C.; Beltrán, M.; Rodríguez, G.; Malo, J. (2017). Actualización del modelo conceptual del área geotérmica de Paipa. Informe Técnico, Servicio Geológico Colombiano, Bogotá, Colombia.
  11. Alfaro, C.; Rueda-Gutiérrez, J.B.; Casallas, Y.; Rodríguez, G.; Malo, J. (2021). Approach to the geothermal potential of Colombia. Geothermics, 96, 102169. https://doi.org/10.1016/j.geothermics.2021.102169
  12. Alfaro-Valero, C.; Aguirre-Corrales, A. (2006). Geoquímica de fuentes minerales y termales del Complejo Volcánico Cerro Bravo–Cerro Machín, Colombia. Boletín Geológico, 41, 76-120. https://doi.org/10.32685/0120-1425/boletingeo.41.2006.167
  13. Almaguer-Rodríguez, J.L. (2013). Estudio magnetotelúrico con fines de interés geotérmico en el sector norte del Nevado de Ruiz, Colombia. Tesis de maestría. Universidad Nacional Autónoma de México, Juriquilla, México.
  14. Alpala, J.; Alpala, R.; Battaglia, M. (2017). Monitoring remote volcanoes: the 2010–2012 unrest at Sotará volcano (Colombia). Journal of Volcanology and Geothermal Research, 344, 224-231. https://doi.org/10.1016/j.jvolgeores.2017.05.021
  15. Alpala, R.; Londoño, J.M.; Torres, R.; Cadena, Ó. (2018). Análisis de posibles fuentes generadoras de eventos sísmicos tipo “tornillo” en el volcán Puracé, Colombia. Boletín Geológico, 44, 57-73. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.34
  16. Altmann, J.B.; Müller, B.I.R.; Müller, T.M.; Heidbach, O.; Tingay, M.R.P.; Weißhardt, A. (2014). Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation. Geothermics, 52, 195-205. https://doi.org/10.1016/j.geothermics.2014.01.004
  17. Aragón-Aguilar, A.; Izquierdo-Montalvo, G.; Pal-Verma, M.; Santoyo-Gutiérrez, S.; Moya-Acosta, S.L. (2009). Análisis del influjo en pozos geotérmicos para la determinación de sus flujos máximos. Ingeniería Hidráulica en México, 24(1), 73-83.
  18. Avellán, D.R.; Macías, J.L.; Arce, J.L.; Saucedo-Girón, R.; Garduño-Monroy, V.H.; Jiménez-Haro, A.; Sosa-Ceballos, G.; Cisneros, G.; Bernal, J.P.; Layer, P.W.; García-Sánchez, L.; Reyes-Agustín, G.; Rangel, E.; Navarrete, J.A.; López-Loera, H. (2019). Geology of the late Pleistocene Tres Virgenes Volcanic Complex, Baja California Sur (México). Journal of Maps, 15(2), 227-237. https://doi.org/10.1080/17445647.2019.1576552
  19. Ayala, L.C. (2014). Aplicación de técnicas de magnetotelúrica en un área de interés geotérmico en cercanías a la Falla Nereidas al occidente del Volcán Nevado del Ruiz. Tesis de grado, Universidad Nacional de Colombia, Bogotá, Colombia.
  20. Barbier, E. (2002). Geothermal energy technology and current status: an overview. Renewable and Sustainable Energy Reviews, 6(1-2), 3-65. https://doi.org/10.1016/S1364-0321(02)00002-3
  21. Bauer, J.F.; Krumbholz, M.; Luijendijk, E.; Tanner, D.C. (2019). A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir. Solid Earth, 10(6), 2115-2135. https://doi.org/10.5194/se-10-2115-2019
  22. Bayer, P.; Rybach, L.; Blum, P.; Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446-463. https://doi.org/10.1016/j.rser.2013.05.039
  23. Beier, R.A. (2021). Analysis of thermal response tests on boreholes with controlled inlet temperature versus controlled heat input rate. Geothermics, 94, 102099. https://doi.org/10.1016/j.geothermics.2021.102099
  24. Benamar, M.A.; Azzaz, H.; Khaldi, A. K. (2023). Chemical geothermometers and mixing models to understand the thermal aptitudes in the management of Bouhanifia and Saida geothermal resources, northwest of Algeria. Groundwater for Sustainable Development, 20, 100863. https://doi.org/10.1016/j.gsd.2022.100863
  25. Bernet, M.; Urueña, C.; Amaya, S.; Peña, M.L. (2016). New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. Journal of Volcanology and Geothermal Research, 327, 299-309. https://doi.org/10.1016/j.jvolgeores.2016.08.013
  26. Bertani, R. (2005). World geothermal power generation in the period 2001–2005. Geothermics, 34(6), 651-690. https://doi.org/10.1016/j.geothermics.2005.09.005
  27. Boada-Herrera, M.; Cabrera-Ottaviani, C.; Meza-Múnera, E. (2018). Modelo de adopción de energías renovables en Uruguay y su comparación con Ecuador y Colombia. ENERLAC. Revista de Energía de Latinoamérica y el Caribe, 2(1), 92-135.
  28. Bodvarsson, G.; Pruess, K.; Lippmann, M. (1986). Modeling of geothermal systems. Journal of Petroleum Technology, 38(9), 1007-1021. https://doi.org/10.2118/13613-PA
  29. Bolaños-Cabrera, G.; Murcia, H.; Llano-Montenegro, D.; Thouret, J.C.; Córdoba, G.; Botero-Gómez, L.A.; Sánchez-Torres, L. (2024). New evidence of Holocene pyroclastic density currents at Galeras volcano, Colombia. Journal of Volcanology and Geothermal Research, 455, 108203. https://doi.org/10.1016/j.jvolgeores.2024.108203
  30. Borenstein, S. (2012). The private and public economics of renewable electricity generation. Journal of Economic Perspectives, 26(1), 67-92. https://doi.org/10.1257/jep.26.1.67
  31. Borrero, C.; Murcia, H.; Agustín-Flores, J.; Arboleda, M.T.; Giraldo, A.M. (2017). Pyroclastic deposits of San Diego maar, central Colombia: an example of a silicic magma-related monogenetic eruption in a hard substrate. Geological Society, London, Special Publications, 446, 361-374. https://doi.org/10.1144/SP446.10
  32. Botero-Gómez, L.A.; Osorio, P.; Murcia, H.; Borrero, C.; Grajales, J.A. (2018). Campo volcánico monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte I): Características morfológicas y relaciones temporales. Boletín de Geología, 40(3), 85-102. https://doi.org/10.18273/revbol.v40n3-2018005
  33. Botero-Gómez, L.A.; Murcia, H.; Hincapié-Jaramillo, G. (2023). The effect of fault systems on volcanic activity: Insights from the subduction-related, Quaternary Villamaría-Termales monogenetic volcanic field in Colombia. Journal of Volcanology and Geothermal Research, 444, 107969. https://doi.org/10.1016/j.jvolgeores.2023.107969
  34. Bravo-López, M.; Marín, S.; Terreros-Barreto, J.R.; Garcés, A.; Molina, A.; Rivera, M.; Wheeler, P. (2022). An overview of the Colombian power system. International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control. Curicó, Chile. https://doi.org/10.1109/ICA-ACCA56767.2022.10006289
  35. Brown, C.S. (2022). Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models. Geothermics, 105, 102503. https://doi.org/10.1016/j.geothermics.2022.102503
  36. Bucheli-Olaya, C.A. (2020). Condiciones pre-eruptivas del edificio volcánico Santa Helena, Complejo Volcánico Doña Juana, Colombia. Tesis de grado, Universidad de Los Andes, Bogotá, Colombia.
  37. Bustaffa, E.; Cori, L.; Manzella, A.; Nuvolone, D.; Minichilli, F.; Bianchi, F.; Gorini, F. (2020). The health of communities living in proximity of geothermal plants generating heat and electricity: A review. Science of the Total Environment, 706, 135998. https://doi.org/10.1016/j.scitotenv.2019.135998
  38. Calderón-Chaparro, R.A.; Vargas-Cuervo, G. (2019). Determination of hydrothermal prospects in Paipa geothermal region (Boyacá, Colombia), using remote sensing and field data. Earth Sciences Research Journal, 23(4), 265-282. https://doi.org/10.15446/esrj.v23n4.77810
  39. Calderón-Zamudio, A.C. (2021). Comparación de datos SEM-EDX vs. EPMA en anfíboles e implicaciones geotermobarométricas: caso de estudio en piroclastos del Volcán Doña Juana, Nariño. Tesis de grado, Universidad de los Andes, Colombia.
  40. Calvache-Proaño, F.D.; Toapanta-Chanatasig, E.J. (2022). Diseño de un sistema centralizado de calefacción para el Parque Industrial “El Obraje” ubicado en la ciudad de Machachi. Tesis de grado. Escuela Politécnica Nacional, Quito.
  41. Cano, N.A.; Céspedes, S.; Redondo, J.; Foo, G.; Jaramillo, D.; Martínez, D.; Gutiérrez, M.; Pataquiba, J.; Rojas, J.; Cortés, F.B.; Franco, C.A. (2022). Power from geothermal resources as a co-product of the oil and gas industry: A review. ACS Omega, 7(45), 40603-40624. https://doi.org/10.1021/acsomega.2c04374
  42. Cardona, C.; Santacoloma, C.; White, R.; McCausland, W.; Trujillo, N.; Narváez, A.; Bolaños, R.; Manzo, O. (2009). Sismicidad tipo “drumbeat” asociada a la erupción y emplazamiento de un domo en el volcán Nevado del Huila, noviembre de 2008. XII Congreso Colombiano de Geología, Paipa, Colombia.
  43. Cardona-Cardona, M. (2023). Estimación de caudales de descarga de aguas termales en el área de Nereidas y revisión del ciclo hidrológico para el área de estudio. Tesis de grado, Universidad de Caldas.
  44. Carvajal, D.; Alfaro, C.; Mendoza-Mendoza, J.C.; Romero, D.; Mojica, J. (2008). Contribución al modelo geotérmico del volcán Azufral a partir de identificación de zonas de alteración hidrotermal. Geología Colombiana, 33, 99-108.
  45. Casallas-Moreno, K.L.; González-Escobar, M.; Gómez-Arias, E.; Mastache-Román, E.A.; Gallegos-Castillo, C.A.; González-Fernández, A. (2021). Analysis of subsurface structures based on seismic and gravimetric exploration methods in the Las Tres Vírgenes volcanic complex and geothermal field, Baja California Sur, Mexico. Geothermics, 92, 102026. https://doi.org/10.1016/j.geothermics.2020.102026
  46. Ceballos-Hernández, J.A.; Martínez-Tabares, L.M.; Valencia-Ramírez, L.G.; Pulgarín-Álzate, B.A.; Correa-Tamayo, A.M.; Narváez-Marulanda, B.L. (2020). Geological evolution of the Nevado del Ruiz Volcanic Complex. In: J. Gómez, A.O. Pinilla-Pachón (eds.). The Geology of Colombia (pp. 267-296). Volume 4, Chapter 7, Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.07
  47. Cerpa-Londoño, A.C. (2018). Caracterización del potencial geotérmico a partir de análisis geoquímicos de fuentes termales, en el Volcán Cerro Machín, Colombia. Tesis de grado, Universidad EIA, Colombia.
  48. Cervantes, C.A.M. (2019). 3D modelling of faulting and intrusion of the Nevado del Ruiz Volcano, Colombia. Tesis de maestría, Reykjavík University, Islandia.
  49. Céspedes, S.; Cano, N.A.; Foo, G.; Jaramillo, D.; Martínez, D.; Gutiérrez, M.; Pataquiba, J.; Rojas, J.; Cortés, F.B.; Franco, C.A. (2022). Technical and environmental feasibility study of the co-production of crude oil and electrical energy from geothermal resources: First field trial in Colombia. Processes, 10(3), 568. https://doi.org/10.3390/pr10030568
  50. CHEC; ICEL; CONTECOL; Geotérmica Italiana. (1983). Investigación Geotérmica. Macizo volcánico del Ruiz. Fase II, Etapa A. Vol. I, II, III y IV. Bogotá. Central Hidroeléctrica de Caldas, Instituto Colombiano de Energía Eléctrica, Consultoría Técnica Colombiana Ltda., Geotérmica Italiana.
  51. CHEC. (2014). Informe final resultados análisis de aguas proyecto geotérmico nereidas v1. Informe Técnico, Central Hidroeléctrica de Caldas, Manizales, Colombia.
  52. Chiodi, A.; Báez, W.; Tassi, F.; Bustos, E.; Filipovich, R.; Murray, J.; Rizzo, A.; Vaselli, O.; Giordano, G.; Viramonte, J.G. (2024). Fluid geochemistry of the Cerro Galán geothermal system (Southern Puna, Argentina): Implications for the geothermal potential of one of the youngest giant calderas in the Andes. Journal of Volcanology and Geothermal Research, 450, 108089. https://doi.org/10.1016/j.jvolgeores.2024.108089
  53. Clauser, C.; Ewert, M. (2018). The renewables cost challenge: Levelized cost of geothermal electric energy compared to other sources of primary energy - Review and case study. Renewable and Sustainable Energy Reviews, 82(Part 3), 3683-3693. https://doi.org/10.1016/j.rser.2017.10.095
  54. Coviello, M. (2000). Estudio para la evaluación del entorno del Proyecto Geotérmico Binacional “Tufiño-Chiles-Cerro Negro”. Comisión Económica para América Latina y el Caribe (CEPAL).
  55. Das, P.; Maya, K.; Padmalal, D. (2022). Hydrogeochemistry of the Indian thermal springs: Current status. Earth-Science Reviews, 224, 103890. https://doi.org/10.1016/j.earscirev.2021.103890
  56. Díaz-Gil, A.; Aguirre-Hoyos, L.M. (2014). Análisis estructural detallado de un sector del Valle de Nereidas, Macizo Volcánico Nevado del Ruiz, MVNR. Aporte al proyecto geotérmico EPM-CHEC. Tesis de grado, Universidad de Caldas, Manizales, Colombia.
  57. Dickson, M.H.; Fanelli, M. (2013). Geothermal energy: utilization and technology. Routledge.
  58. Donaldson, I.G. (1970). The simulation of geothermal systems with a simple convective model. Geothermics, 2(Part 1), 649-654. https://doi.org/10.1016/0375-6505(70)90065-9
  59. Duque-Trujillo, J.F.; Toro-Villegas, G.E.; Cardona-Molina, A.; Calvache-Velazco, M. (2010). Geología, geocronología y geoquímica del volcán Morasurco, Pasto, Colombia. Boletín de Ciencias de la Tierra, 27, 25-36.
  60. Escobar-Ramos, J.F. (2020). Geomorfología del complejo volcánico Las Ánimas, Nariño-Cauca, Colombia. Tesis de grado, Universidad de los Andes, Colombia.
  61. Ezekiel, J.; Ebigbo, A.; Arifianto, I.; Daniilidis, A.; Finkbeiner, T.; Mai, P.M. (2022). Techno-economic performance optimization of hydrothermal doublet systems: Application to the Al Wajh basin, Western Saudi Arabia. Geothermics, 105, 102532. https://doi.org/10.1016/j.geothermics.2022.102532
  62. Fadel, M.; Reinecker, J.; Bruss, D.; Moeck, I. (2022). Causes of a premature thermal breakthrough of a hydrothermal project in Germany. Geothermics, 105, 102523. https://doi.org/10.1016/j.geothermics.2022.102523
  63. Feng, G.; Wang, X.; Wang, M.; Kang, Y. (2020). Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir. Engineering Fracture Mechanics, 235, 107180. https://doi.org/10.1016/j.engfracmech.2020.107180
  64. Fischer, T.P.; Arehart, G.B.; Sturchio, N.C.; Williams, S.N. (1996). The relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia. Geology, 24(6), 531-534. https://doi.org/10.1130/0091-7613(1996)024<0531:TRBFGC>2.3.CO;2
  65. Fischer, T.P.; Sturchio, N.C.; Stix, J.; Arehart, G.B.; Counce, D.; Williams, S.N. (1997). The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. Journal of Volcanology and Geothermal Research, 77(1-4), 229-253. https://doi.org/10.1016/S0377-0273(96)00096-0
  66. Floridia, G.; Cacace, M.; Scheck-Wenderoth, M.; Bott, J.; Viccaro, M. (2022). 3D thermal model of Sicily (Southern Italy) and perspectives for new exploration campaigns for geothermal resources. Global and Planetary Change, 218, 103976. https://doi.org/10.1016/j.gloplacha.2022.103976
  67. Fokker, P.A.; Borello, E.S.; Viberti, D.; Verga, F.; van Wees, J.D. (2021). Pulse testing for monitoring the thermal front in aquifer thermal energy storage. Geothermics, 89, 101942. https://doi.org/10.1016/j.geothermics.2020.101942
  68. Forero-Herrera, J.A. (2012). Caracterización de las alteraciones hidrotermales en el flanco Noroccidental del Volcán Nevado del Ruiz, Colombia. Tesis de maestría, Universidad Nacional de Colombia, Colombia.
  69. Forero, J.; Zuluaga, C.; Mojica, J. (2011). Alteration related to hydrothermal activity of the Nevado del Ruiz Volcano (NRV), Colombia. Boletín de Geología, 33(1), 59-68.
  70. Freeden, W.; Nutz, H. (2024). Geothermal energy and exploration. In: Exploratory Potential Methods in Geothermal Power Generation (pp. 1-20). Birkhäuser. https://doi.org/10.1007/978-3-031-54412-5_1
  71. Fridleifsson, I.B. (2001). Geothermal energy for the benefit of the people. Renewable and Sustainable Energy Reviews, 5(3), 299-312. https://doi.org/10.1016/S1364-0321(01)00002-8
  72. Gao, X.; Zhang, Y.; Cheng, Y.; Yu, Z.; Huang, Y. (2022). Impact of fractures with multi-scale aperture variability on production observations of geothermal reservoir units. Journal of Hydrology, 615(Part A), 128693. https://doi.org/10.1016/j.jhydrol.2022.128693
  73. García, Y.K.; Sánchez, J.J. (2019). Contribuciones geológicas al modelo conceptual geotérmico en la región de los volcanes Chiles-Cerro Negro (Colombia-Ecuador). Boletín de Geología, 41(1), 151-171. https://doi.org/10.18273/revbol.v41n1-2019008
  74. García, M.A.; Vargas, C.A.; Koulakov, I.Y. (2019). Local earthquake tomography of the Nevado del Huila Volcanic Complex (Colombia): Magmatic and tectonic interactions in a volcanic‐glacier complex system. Journal of Geophysical Research: Solid Earth, 124(2), 1688-1699. https://doi.org/10.1029/2018JB016324
  75. García, A.V.; Sánchez, J.J.; Torio, E.; Bonilla, G.E.; Rodríguez, A.I. (2022). Caracterización de minerales de alteración en domos y depósitos piroclásticos del área geotérmica de Paipa, Colombia. Boletín de Geología, 44(3), 219-233. https://doi.org/10.18273/revbol.v44n3-2022010
  76. García-Gamba, A.S. (2020). Perfil de variación geoquímica-XRF de elementos mayores en el paleosuelo marcador del Holoceno para el volcán Ánimas (Nariño). Tesis de grado, Universidad de los Andes, Colombia.
  77. Garzón, G. (2001). Catálogo de fuentes termales del Parque Nacional Natural de los Nevados. INGEOMINAS. Informe Técnico.
  78. Gauntlett, M.; Hudson, T.S.; Kendall, J.M.; Rawlinson, N.; Blundy, J.D.; Lapins, S.; Goitom, B.; Hammond, J.; Oppenheimer, C.; Ogubazghi, G. (2022). Seismic tomography of Nabro caldera, Eritrea: insights into the magmatic and hydrothermal systems of a recently erupted volcano. Journal of Geophysical Research: Solid Earth, 128(5). https://doi.org/10.1002/essoar.10512608.1
  79. Gerber, L.; Maréchal, F. (2012). Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland. Energy, 45(1), 908-923. https://doi.org/10.1016/j.energy.2012.06.068
  80. Giggenbach, W.F.; García, N.; Londoño, A.; Rodríguez, L.; Rojas, N.; Calvache, M.L. (1990). The chemistry of fumarolic vapor and thermal-spring discharges from the Nevado del Ruiz volcanic-magmatic-hydrothermal system, Colombia. Journal of Volcanology and Geothermal Research, 42(1-2), 13-39. https://doi.org/10.1016/0377-0273(90)90067-P
  81. Giordano, G.; Ahumadab, F.; Aldegac, L.; Baezb, W.; Becchiob, R.; Bigic, S.; Caricchi, C.; Chiodi, A.L.; Corrado, S.; De Benedetti, A.A.; Favetto, A.B.; Filipovich, R.E.; Fusari, A.; Groppelli, G.; Invernizzi, C.; Maffucci, R.; Norini, G.; Pinton, A.; Pomposiello, M.C.; Tassi, F.; Taviani, S.; Viramonteb, J.M. (2016). Preliminary data on the structure and potential of the Tocomar geothermal field (Puna plateau, Argentina). Energy Procedia, 97, 202-209. https://doi.org/10.1016/j.egypro.2016.10.055
  82. Gómez-Díaz, E.; Marín-Cerón, M.I. (2018). Preliminary geochemical study of thermal waters at the Puracé volcano system (South Western Colombia): an approximation for geothermal exploration. Boletín de Geología, 40(1), 43-61. https://doi.org/10.18273/revbol.v40n1-2018003
  83. Gómez-Díaz, E.; Mariño-Arias, O.M. (2020). Structural assessment and geochemistry of thermal waters at the Cerro Machin Volcano (Colombia): An approach to understanding the geothermal system. Journal of Volcanology and Geothermal Research, 400, 106910. https://doi.org/10.1016/j.jvolgeores.2020.106910
  84. Gómez-Díaz, E. (2020). Geochemical Interpretation of Bicarbonate Thermal Springs for the Comprehension of a Geothermal System: A Case Study at Cerro Machin Volcano, Colombia. World Geothermal Congress. Reykjavik, Iceland.
  85. Gómez-Navarro, T.; Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131-141. https://doi.org/10.1016/j.rser.2018.03.015
  86. Gómez-Zamorano, D. (2014). Procesamiento de datos GNSS aplicados a la falla Villamaría-Termales en el sector noroccidental del volcán Nevado del Ruiz. Tesis de grado, Universidad de Calas, Colombia.
  87. Gondal, I.A.; Masood, S.A.; Amjad, M. (2017). Review of geothermal energy development efforts in Pakistan and way forward. Renewable and Sustainable Energy Reviews, 71, 687-696. https://doi.org/10.1016/j.rser.2016.12.097
  88. González-García, J.; Hauser, J.; Annetts, D.; Franco, J.; Vallejo, E.; Regenauer-Lieb, K. (2015). Nevado del Ruiz Volcano (Colombia): a 3D model combining geological and geophysical information. World Geothermal Congress. Melbourne, Australia.
  89. González-García, J.; Jessell, M. (2016). A 3D geological model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of geological uncertainty using a stochastic approach based on Bézier curve design. Tectonophysics, 687, 139-157. https://doi.org/10.1016/j.tecto.2016.09.011
  90. González-Idárraga, C.E. (2020). Caracterización resistiva 3D del área geotérmica de Paipa, Colombia. Boletín de Geología, 42(3), 81-97. https://doi.org/10.18273/revbol.v42n3-2020003
  91. González, L.; Jaramillo, C.M. (2002). Estudio neotectónico multidisciplinario aplicado a la Falla Villamaría Termales. Tesis, Universidad de Caldas, Manizales, Colombia.
  92. González-Partida, E.; Arellano-Gómez, V. M.; Barragán-Reyes, R.M.; Birkle, P.; Torres-Rodríguez, V. (1997). Comportamiento geoquímico de las manifestaciones geotérmicas en el flanco oriental del volcán El Nevado del Ruiz (Río Claro-Las Nereidas), Colombia. Tecnología y Ciencias del Agua, 12(3), 5-13.
  93. González, R.E.; Suárez, C.O.; Higuera, I.C.; Rojas, L.E. (2020). Alternative workflow for three-dimensional basin modeling in areas of structural complexity: Case study from the Middle Magdalena Valley, Colombia. AAPG Bulletin, 104(1), 1-19. https://doi.org/10.1306/0415191612917185
  94. Gude, V.G. (2016). Geothermal source potential for water desalination – Current status and future perspective. Renewable and Sustainable Energy Reviews, 57, 1038-1065. https://doi.org/10.1016/j.rser.2015.12.186
  95. Hernández-Ochoa, A.F.; Aragón-Aguilar, A.; Franco-Nava, J.M. (2021). An up-to-date perspective of geothermal power technology. In: S. Dutta, C.M. Hussain (eds.). Sustainable Fuel Technologies Handbook (pp. 201-238). Section 6. Academic Press. https://doi.org/10.1016/B978-0-12-822989-7.00008-1
  96. INGEOMINAS. (1995). Boletín Semestral Actividad de los volcanes colombianos. Vol. 1. No. 1. 89 p. Bogotá.
  97. Inguaggiato, C.; Censi, P.; Zuddas, P.; Londoño, J.M.; Chacón, Z.; Alzate, D.; Brusca, L.; D’Alessandro, W. (2015). Geochemistry of REE, Zr and Hf in a wide range of pH and water composition: The Nevado del Ruiz volcano-hydrothermal system (Colombia). Chemical geology, 417, 125-133. https://doi.org/10.1016/j.chemgeo.2015.09.025
  98. Inguaggiato, C.; García, M.Á.P.; Maldonado, L.F.M.; Peiffer, L.; Pappaterra, S.; Brusca, L. (2020). Precipitation of secondary minerals in acid sulphate-chloride waters traced by major, minor and rare earth elements in waters: The case of Puracé volcano (Colombia). Journal of Volcanology and Geothermal Research, 407, 107106. https://doi.org/10.1016/j.jvolgeores.2020.107106
  99. Irumhe, P.E.; Obiadi, I.I.; Obiadi, C.M.; Ezenwaka, C.K.; Mgbolu, C.C. (2019). Estimating sedimentary pile thickness, structural lineaments and heat flow in parts of North Central Nigeria from aeromagnetic data. Solid Earth Sciences, 4(3), 92-101. https://doi.org/10.1016/j.sesci.2019.06.001
  100. Jalili, P.; Ganji, D.D.; Nourazar, S.S. (2018). Investigation of convective-conductive heat transfer in geothermal system. Results in Physics, 10, 568-587. https://doi.org/10.1016/j.rinp.2018.06.047
  101. Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Gutiérrez-Negrín, L.C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A.; Zemedkun, M.T. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2(5), 324-339. https://doi.org/10.1038/s43017-021-00154-y
  102. Juliusson, E.; Bjornsson, S. (2021). Optimizing production strategies for geothermal resources. Geothermics, 94, 102091. https://doi.org/10.1016/j.geothermics.2021.102091
  103. Kazemi, A.R.; Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Fraser, R. (2019). Performance evaluation of an enhanced geothermal system in the Western Canada Sedimentary Basin. Renewable and Sustainable Energy Reviews, 113, 109278. https://doi.org/10.1016/j.rser.2019.109278
  104. Khaled, M.S.; Wang, N.; Ashok, P.; van Oort, E. (2023). Downhole heat management for drilling shallow and ultra-deep high enthalpy geothermal wells. Geothermics, 107, 102604. https://doi.org/10.1016/j.geothermics.2022.102604
  105. Kitamura, K.; Fujii, Y.; Inagaki, H.; Aizawa, K.; Ishibashi, J. I.; Saito, H.; Fujimitsu, Y. (2023). Evaluation of a potential supercritical geothermal system in the Kuju region, central Kyushu, Japan. Geothermics, 107, 102602. https://doi.org/10.1016/j.geothermics.2022.102602
  106. Krieger, M.; Kurek, K.A.; Brommer, M. (2022). Global geothermal industry data collection: A systematic review. Geothermics, 104, 102457. https://doi.org/10.1016/j.geothermics.2022.102457
  107. Lamy-Chappuis, B.; Yapparova, A.; Driesner, T. (2022). Advanced well model for superhot and saline geothermal reservoirs. Geothermics, 105, 102529. https://doi.org/10.1016/j.geothermics.2022.102529
  108. Laughlin, A.W.; Goff, S.J. (1991). Recent geothermal investigations in Honduras: An overview. Journal of Volcanology and Geothermal Research, 45(1-2), 1-9. https://doi.org/10.1016/0377-0273(91)90018-U
  109. Lebbihiat, N.; Atia, A.; Arıcı, M.; Meneceur, N. (2021). Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. Journal of Cleaner Production, 302, 126950. https://doi.org/10.1016/j.jclepro.2021.126950
  110. Lequerica-Torres, R.E. (2008). Geotermia: otra fuente de energía para Colombia. Tesis de grado, Universidad de Los Andes, Bogotá, Colombia.
  111. Lewicki, J.L.; Fischer, T.; Williams, S.N. (2000). Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution. Bulletin of Volcanology, 62, 347-361. https://doi.org/10.1007/s004450000100
  112. Li, J.; Wu, Z.; Tian, G.; Ruan, C.; Sagoe, G.; Wang, X. (2022). Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in north China. Applied Geochemistry, 138, 105211. https://doi.org/10.1016/j.apgeochem.2022.105211
  113. Liotta, D.; Brogi, A.; Ruggieri, G.; Zucchi, M. (2021). Fossil vs. active geothermal systems: A field and laboratory method to disclose the relationships between geothermal fluid flow and geological structures at depth. Energies, 14(4), 933. https://doi.org/10.3390/en14040933
  114. Liu, F.; Long, X. (2022). Investigation on geological structure and geothermal resources using seismic exploration. Geothermics, 106, 102572. https://doi.org/10.1016/j.geothermics.2022.102572
  115. Londoño, J.M. (1996). Temporal change in coda Q at Nevado del Ruiz Volcano, Colombia. Journal of Volcanology and Geothermal Research, 73(1-2), 129-139. https://doi.org/10.1016/0377-0273(95)00084-4
  116. Londoño, J.M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156-168. https://doi.org/10.1016/j.jvolgeores.2016.06.003
  117. Londoño, J.M. (2018). Variación temporal de la atenuación de ondas sísmicas en la región del volcán Puracé, Colombia. Boletín Geológico, 44, 75-88.
  118. Londoño, J.M. (2022). Variación espacio-temporal del valor b en el Volcán Cerro Machín, Colombia. Boletín de Geología, 44(3), 143-158. https://doi.org/10.18273/revbol.v44n3-2022006
  119. Londoño, J.M.; Sudo, Y. (2001). Spectral characteristics of volcano-tectonic earthquake swarms in Nevado del Ruiz Volcano, Colombia. Journal of Volcanology and Geothermal Research, 112(1-4), 37-52. https://doi.org/10.1016/S0377-0273(01)00233-5
  120. Londoño, J.M.; Sudo, Y. (2003). Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia). Journal of Volcanology and Geothermal Research, 119(1-4), 61-87. https://doi.org/10.1016/S0377-0273(02)00306-2
  121. Londoño, J.; Cardona, C. (2010). Seismicity associated to the reactivation of Nevado del Huila Volcano, Colombia. Cities on Volcanoes, Tenerife, España.
  122. Londoño, J.M.; Kumagai, H. (2018). 4D seismic tomography of Nevado del Ruiz Volcano, Colombia, 2000–2016. Journal of Volcanology and Geothermal Research, 358, 105-123. https://doi.org/10.1016/j.jvolgeores.2018.02.015
  123. Londoño, J.M.; Kumagai, H.; Torres, R. (2020). Temporal change of the magma plumbing system at Galeras volcano, Colombia, revealed by repeated seismic tomography in 2009–2018. Journal of Volcanology and Geothermal Research, 406, 107075. https://doi.org/10.1016/j.jvolgeores.2020.107075
  124. López-Castro, S.M. (2009). Estratigrafía, petrología y geoquímica de las rocas volcánicas del flanco occidental del volcán Puracé, alrededores de Coconuco. Tesis de maestría, Universidad EAFIT, Colombia.
  125. López-Ramos, E.; González-Penagos, F.; Patiño, C.A.; López, A. (2022). Low - medium enthalpy geothermal resource assessment in deep reservoirs of the Llanos Basin - Colombia. CT&F - Ciencia, Tecnología y Futuro, 12(1), 13-44. https://doi.org/10.29047/01225383.380
  126. Lu, S.M. (2018). A global review of enhanced geothermal system (EGS). Renewable and Sustainable Energy Reviews, 81(Part 2), 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
  127. Lund, J.W.; Boyd, T. (2007). Geothermal Energy Uses. Geo-Heat Center Quarterly Bulletin, 28(2), Complete Bulletin.
  128. Lund, J.W.; Freeston, D.H.; Boyd, T.L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40(3), 159-180. https://doi.org/10.1016/j.geothermics.2011.07.004
  129. Lund, J.W.; Toth, A.N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90, 101915. https://doi.org/10.1016/j.geothermics.2020.101915
  130. Lundgren, P.; Samsonov, S.V.; López-Vélez, C.M.; Ordóñez, M. (2015). Deep source model for Nevado del Ruiz Volcano, Colombia, constrained by interferometric synthetic aperture radar observations. Geophysical Research Letters, 42(12), 4816-4823. https://doi.org/10.1002/2015GL063858
  131. Macellari, C.E. (2021). Recent uplift and the origin of hydrodynamic traps in the Llanos Basin of Colombia. Marine and Petroleum Geology, 132, 105198. https://doi.org/10.1016/j.marpetgeo.2021.105198
  132. Macias-Villarraga, P.A.; Granja-Rodríguez, G. (2020). Cinemática, análisis deformativo y configuración estructural, del sector Laguna Baja; entre el río Claro y el río Molinos, Villamaría (Caldas). Tesis de grado, Universidad de Caldas, Manizales, Colombia.
  133. Majer, E.; Nelson, J.; Robertson-Tait, A.; Savy, J.; Wong, I. (2012). Protocol for addressing induced seismicity associated with enhanced geothermal systems. US Department of Energy, 52(10.2172), 1219482.
  134. Marini, L. (2000). Geochemical techniques for the exploration and exploitation of geothermal energy. Universita degli Studi di Genova.
  135. Martínez-Martínez, J.A. (2021). Marco jurídico sobre la generación de energía geotérmica en Colombia. Tesis de grado, Pontificia Universidad Javeriana, Bogotá, Colombia.
  136. Martínez-Ruiz, Y.; Manotas-Duque, D.F.; Ramírez-Malule, H. (2021). Análisis de opciones reales para la valoración financiera de proyectos de energía geotérmica en Colombia. Revista CEA, 7(15), e1944. https://doi.org/10.22430/24223182.1944
  137. Mejía, E.L.; Velandia, F.; Zuluaga, C.A.; López, J.A.; Cramer, T. (2012). Análisis estructural al noreste del volcán Nevado del Ruíz, Colombia – aporte a la exploración geotérmica. Boletín de Geología, 34(1), 27-41.
  138. Mejía-Fragoso, J.C.; Flórez, M.A.; Bernal-Olaya, R. (2024). Predicting the geothermal gradient in Colombia: a machine learning approach. Geothermics, 122, 103074. https://doi.org/10.48550/arXiv.2404.05184
  139. Meza, C. (2014). A review on the Central America electrical energy scenario. Renewable and Sustainable Energy Reviews, 33, 566-577. https://doi.org/10.1016/j.rser.2014.02.022
  140. Meza-Maldonado, L.F.; Inguaggiato, S.; Jaramillo, M.T.; Valencia, G.G.; Mazot, A. (2017). Volatiles and energy released by Puracé volcano. Bulletin of Volcanology, 79, 84. https://doi.org/10.1007/s00445-017-1168-y
  141. Mogi, T.; Nakama, S. (1993). Magnetotelluric interpretation of the geothermal system of the Kuju volcano, southwest Japan. Journal of Volcanology and Geothermal Research, 56(3), 297-308. https://doi.org/10.1016/0377-0273(93)90022-J
  142. Molavi, J.; McDaniel, J. (2016). A review of the benefits of geothermal heat pump systems in retail buildings. Procedia Engineering, 145, 1135-1143. https://doi.org/10.1016/j.proeng.2016.04.147
  143. Monsalve, M.L.; Rodríguez, G.I.; Méndez, R.A.; Bernal, N.F. (1998). Geology of the well Nereidas 1, Nevado del Ruiz Volcano, Colombia. Geothermal Resources Council Transactions, 22, 263-268.
  144. Monsalve, M.L.; Arcila, M. (2009). Contexto tectónico de la zona volcánica del Puracé y provincia Alcalina del Valle superior del Magdalena. Ingeniería Investigación y Desarrollo, 8(1), 35-41.
  145. Monsalve, M.L.; Pulgarín, B.A.; Mojica, J.; Santacoloma, C.C.; Cardona, C.E. (2011a). Interpretación de la actividad eruptiva del volcán Nevado del Huila (Colombia), 2007-2009: análisis de componentes de materiales emitidos. Boletín de Geología, 33(2), 73-93.
  146. Monsalve, M.L.; Rojas, N.R.; Velandia, F.A.; Pintor, I.; Martínez, L.F. (2011b). Caracterización geológica del cuerpo volcánico de Iza, Boyacá-Colombia. Boletín de Geología, 33(1), 117-130.
  147. Monsalve, M.L.; Tamayo, A.M.C.; Arcila, M.; Dixon, J. (2015). Firma Adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico, 43, 23-39. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.27
  148. Montanari, D.; Ruggieri, G.; Bonini, M.; Balestrieri, M. L. (2023). First application of low temperature thermochronology as a tool for geothermal exploration: A promising, preliminary test from the Larderello-Travale geothermal field (Italy). Geothermics, 107, 102603. https://doi.org/10.1016/j.geothermics.2022.102603
  149. Moreno-Alfonso, S.C.; Sánchez, J. J.; Murcia, H. (2021). Evidences of an unknown debris avalanche evento (<0.58 Ma), in the active Azufral volcano (Nariño, Colombia). Journal of South American Earth Sciences, 107, 103138. https://doi.org/10.1016/j.jsames.2020.103138
  150. Moreno-Rendón, D.A.; López-Sánchez, I.J.; Blessent, D. (2020). Geothermal energy in Colombia as of 2018. Ingeniería y Universidad, 24. https://doi.org/10.11144/Javeriana.iyu24.geic
  151. Moyano, I.; Lara, N.; Ospina, D.; Salamanca, A.; Arias, H.; Gómez, E.; Puentes, M.; Rojas, O. (2018). Mapa de anomalías geofísicas de Colombia para recursos minerales, versión 2018. Servicio Geológico Colombiano.
  152. Murcia, H.; Borrero, C.; Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. Journal of Volcanology and Geothermal Research, 383, 77-87. https://doi.org/10.1016/j.jvolgeores.2018.06.013
  153. Murillo-Orobio, L.T.; Chapuel-Cuasapud, D.L.; Botero-Gómez, L.A.; Murcia, H. (2024). Análisis morfo-estructural del Campo Volcánico Monogenético Guamuéz Sibundoy (sur de Colombia). Geofísica Internacional, 63(4), 1283-1314. https://doi.org/10.22201/igeof.2954436xe.2024.63.4.1762
  154. Navarro, S.; Pulgarín, B.; Monsalve, M.L.; Cortés, G.P.; Calvache, M.L.; Pardo, N.; Murcia, H. (2009). Geología e historia eruptiva del complejo volcánico Doña Juana (CVDJ) Nariño. Boletín de Geología, 31(2), 109-118.
  155. Norini, G.; Carrasco-Núñez, G.; Corbo-Camargo, F.; Lermo, J.; Hernández-Rojas, J.; Castro, C.; Bonini, M.; Montanari, D.; Corti, G.; Moratti, G.; Piccardi, L.; Chávez, G.; Zuluaga, M.C.; Ramírez, M.; Cedillo, F. (2019). The structural architecture of the Los Humeros volcanic complex and geothermal field. Journal of Volcanology and Geothermal Research, 381, 312-329. https://doi.org/10.1016/j.jvolgeores.2019.06.010
  156. Novikov, D.; Dultsev, F.; Filippov, Y. (2022). Geothermal model of the Fore‐Yenisey Sedimentary Basin—Transitional structure between the Ancient Siberian Platform and the Young West Siberian Plate. Acta Geologica Sinica‐English Edition, 96(2), 582-590. https://doi.org/10.1111/1755-6724.14799
  157. Ordóñez, M.; Laverde, C.; Battaglia, M. (2022). The new lava dome growth of Nevado del Ruiz (2015–2021). Journal of Volcanology and Geothermal Research, 430, 107626. https://doi.org/10.1016/j.jvolgeores.2022.107626
  158. Ortiz, J.A.; López, J. (2023). Recorrido y perspectivas de desarrollo del proyecto geotérmico Valle de Nereidas. Revista Energía & Geociencias, 36, 22-24.
  159. Ortiz-González, J.A. (2023). Aplicación del enfoque de desarrollo en cascada en el proyecto geotérmico del Macizo Volcánico del Ruiz. Revista UIS Ingenierías, 22(2), 109-128. https://doi.org/10.18273/revuin.v22n2-2023010
  160. Ortiz-González, J.A.; López-Palacio, J. (2023). Analysis of different electricity generation scenarios in the “Macizo Volcánico del Ruiz” geothermal project. Renewable Energy Focus, 46, 313-322. https://doi.org/10.1016/j.ref.2023.07.003
  161. Ortiz-Prieto, I.; Lorenzo-Pulido, C. (2009). Quince años de monitoreo sísmico en el campo geotérmico de Las Tres Vírgenes, BCS. Geotermia, 22(2), 28-34.
  162. Osorio, P.; Botero-Gómez, L.A.; Murcia, H.; Borrero, C.; Grajales, J.A. (2018). Campo volcánico monogenético Villamaría-Termales, Cordillera Central, Andes colombianos (Parte II): Características composicionales. Boletín de Geología, 40(3), 103-123. https://doi.org/10.18273/revbol.v40n3-2018006
  163. Ossa, J.A. (2018). Cartografía detallada de un área del proyecto geotérmico. Tesis de grado, Universidad de Caldas, Manizales.
  164. Oviedo, M.J.; Blessent, D.; López-Sánchez, J.; Raymond, J. (2023). Contribution to the characterization of the Nevado del Ruiz geothermal conceptual model and rock properties dataset. Journal of South American Earth Sciences, 124, 104259. https://doi.org/10.1016/j.jsames.2023.104259
  165. Pareja, E.R.; García, R.D. (2013). Análisis estructural de la falla Nereidas, en el sector de Nereidas, Villamaría – Caldas. Tesis de grado, Universidad de Caldas, Manizales, Colombia.
  166. Park, D.; Lee, E.; Kaown, D.; Lee, S.S.; Lee, K.K. (2021). Determination of optimal well locations and pumping/injection rates for groundwater heat pump system. Geothermics, 92, 102050. https://doi.org/10.1016/j.geothermics.2021.102050
  167. Parri, R.; Basile, P.; Favaro, L.; Mazzoni, T.; Orlando, S. (2021). The history of geothermal electric power plants on the Island of Ischia, Italy. Geothermics, 89, 101977. https://doi.org/10.1016/j.geothermics.2020.101977
  168. Pasvanoğlu, S. (2021). Geochemical Survey of low-temperature geothermal resource of the Reşadiye Spa (Tokat, Northern Turkey). Geothermics, 94, 102088. https://doi.org/10.1016/j.geothermics.2021.102088
  169. Pearson-Grant, S.C.; Miller, C.A.; Carson, L.B.; Bertrand, E.A.; Leonard, G.S. (2022). Influences on geothermal circulation in the Okataina Volcanic Centre, New Zealand. Journal of Volcanology and Geothermal Research, 432, 107705. https://doi.org/10.1016/j.jvolgeores.2022.107705
  170. Pedraza, N.F.; Velázquez, J.D.; Molina, I.; Pedraza, A. (2022). Gravity studies at Cerro Machín Volcano, Colombia. Boletín Geológico, 49(1), 55-65. https://doi.org/10.32685/0120-1425/bol.geol.49.1.2022.619
  171. Pereira, M.L.; Matias, D.; Viveiros, F.; Moreno, L.; Silva, C.; Zanon, V.; Uchôa, J. (2022). The contribution of hydrothermal mineral alteration analysis and gas geothermometry for understanding high-temperature geothermal fields – The case of Ribeira Grande geothermal field, Azores. Geothermics, 105, 102519. https://doi.org/10.1016/j.geothermics.2022.102519
  172. Pérez-Estay, N.; Molina-Piernas, E.; Roquer, T.; Aravena, D.; Vargas, J.A.; Morata, D.; Arancibia, G.; Valdenegro, P.; García, K.; Elizalde, D. (2022). Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration. Geothermics, 104, 102435. https://doi.org/10.1016/j.geothermics.2022.102435
  173. Piedrahita, D.A.; Aguilar-Casallas, C.; Arango-Palacio, E.; Murcia, H.; Gómez-Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología, 40(3), 29-48. https://doi.org/10.18273/revbol.v40n3-2018002
  174. Pizzi, S.; Corbo, L.; Caputo, A. (2021). Fintech and SMEs sustainable business models: Reflections and considerations for a circular economy. Journal of Cleaner Production, 281, 125217. https://doi.org/10.1016/j.jclepro.2020.125217
  175. Pulgarín, B.A.; Navarro, S.; Monsalve, M.L.; Murcia, H.; Téllez, L.; Correa, A.M.; Martínez Tabares, L.M.; Martínez, L. (2010). Geología e historia eruptiva del Complejo Volcánico Sotará, Colombia. INGEOMINAS.
  176. Pulgarín, B.; Cardona, C.; Agudelo, A.; Santacoloma, C.; Monsalve, M.L.; Calvache, M.; Murcia, C.; Cuéllar, M.; Medina, E.; Balanta, R.; Calderón, Y.; Leiva, Ó.; Ordóñez, M.; Ibáñez, D. (2015). Erupciones recientes del Volcán Nevado del Huila: Lahares asociados y cambios morfológicos del glaciar. Boletín Geológico, 43, 75-87. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.21
  177. Quintanilla, A.L.; Suárez, F. (1994). Fuente de calor en el campo geotérmico de Cerro Prieto y su relación con la anomalía magnética Nuevo León, México. Geofísica Internacional, 33(4), 575-584. https://doi.org/10.22201/igeof.00167169p.1994.33.4.593
  178. Quiroz-Yandun, A.P. (2024). Caracterización geológica-estructural del área de influencia de la falla San Jerónimo en el municipio de Villamaría-Caldas, como aporte investigativo al proyecto geotérmico, Valle de Nereidas-CHEC. Tesis de grado, Universidad de Caldas, Manizales, Colombia.
  179. Raihan, A. (2023). The influences of renewable energy, globalization, technological innovations, and forests on emission reduction in Colombia. Innovation and Green Development, 2(4), 100071. https://doi.org/10.1016/j.igd.2023.100071
  180. Ramírez-Espitia, C. (2021). Preliminary conceptual geothermal model of the Sibundoy thermal area, volcanic arc of southwestern Colombia: ¿a conventional or unconventional geothermal play? Tesis de grado, Universidad EAFIT, Colombia.
  181. Rave-Bonilla, Y.P.; Sánchez, J.J. (2021). Estructuras de disyunción columnar en lavas asociadas al Complejo Volcánico Nevado del Ruíz (Colombia): facies, dimensiones y geometría. Boletín de Geología, 43(2), 45-62. https://doi.org/10.18273/revbol.v43n2-2021003
  182. Reyes-Martínez, C.S.; González-Escobar, M.; Montalvo-Arrieta, J.C.; Velasco-Tapia, F.; Jenchen, U. (2021). Extension in geothermal fields between the Imperial and Mexicali Valleys revealed by 2D seismic imaging and joint gravity-aeromagnetic modeling. Geothermics, 89, 101984. https://doi.org/10.1016/j.geothermics.2020.101984
  183. Rivera-Lara, V.C. (2021). Estudio morfométrico y geomorfológico del campo volcánico monogenético Guamuez–Sibundoy, Colombia. Tesis de grado, Universidad de Caldas, Colombia.
  184. Rodríguez, J.A. (2008). Lectures on geothermal in Central America. United Nations University, Geothermal Training Programme.
  185. Rodríguez-Rodríguez, G. (2023). Aportes a la investigación del sistema geotérmico del volcán Azufral en Colombia mediante modelos 2D de magnetotelúrica. Boletín de Geología, 45(2), 51-63. https://doi.org/10.18273/revbol.v45n2-2023003
  186. Rodríguez-Pantano, H.E. (2021). Simulación técnico-económica de un sistema de generación de energía geotérmica en el volcán Cerro Machín. Tesis de maestría, Universidad ECCI, Colombia.
  187. Rodríguez-Pantano, H.E.; Betancourt, V.; Solís-Chaves, J.S.; Rocha-Osorio, C.M. (2020). Techno-economic simulation of a geothermal energy generation system at the Machin Volcano in Colombia. Simpósio Brasileiro de Sistemas Elétricos. Santo André, Brasil. https://doi.org/10.48011/sbse.v1i1.2431
  188. Rojas-Navarrete, M. (2014). Centroamérica: estadísticas de producción del subsector eléctrico, 2013.
  189. Rojas-Sarmiento, O.E. (2012). Contribución al modelo geotérmico asociado al sistema volcánico Nevado del Ruiz-Colombia, por medio del análisis de la relación entre la susceptibilidad magnética, conductividad eléctrica y térmica del sistema. Tesis de maestría, Universidad Nacional de Colombia, Colombia.
  190. Román-González, L.F. (2021). Aporte de aguas termales proyecto Valle de Nereidas-zona Botero Londoño. Municipio de Villamaría Caldas. Tesis de grado, Universidad de Caldas.
  191. Rueda-Gutiérrez, J.B. (2020). Nuevas evidencias del magmatismo asociado con el sistema geotérmico de Paipa, Boyacá, Colombia. Boletín de Geología, 42(3), 51-79. https://doi.org/10.18273/revbol.v42n3-2020002
  192. Rueda-Gutiérrez, J.; Rodríguez, G. (2016). Geología del área geotérmica de San Diego. Informe Técnico, Servicio Geológico Colombiano, Bogotá, Colombia.
  193. Saar, M.O. (2011). Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hydrogeology Journal, 19(1), 31. https://doi.org/10.1007/s10040-010-0657-2
  194. Sáez-Blázquez, C.; Nieto, I.M.; Maté González, M.; García, P.C.; Martín, A.F.; González-Aguilera, D. (2022). Geophysical exploration for shallow geothermal applications: A case study in Artà, (Balearic Islands, Spain). Geothermics, 105, 102517. https://doi.org/10.1016/j.geothermics.2022.102517
  195. Salalá, L.; Takahashi, R.; Argueta, J.; Wang, J.; Watanabe, N.; Tsuchiya, N. (2023). Permeability enhancement and void formation by chelating agent in volcanic rocks (Ahuachapán and Berlín geothermal fields, El Salvador). Geothermics, 107, 102586. https://doi.org/10.1016/j.geothermics.2022.102586
  196. Salazar-Muñoz, N.; de la Ossa, C.A.R.; Murcia, H.; Schonwalder-Ángel, D.; Botero-Gómez, L.A.; Hincapié, G.; da Silva, J.C.; Sánchez-Torres, L. (2021). Andesitic (SiO2: ~60 wt%) monogenetic volcanism in the northern Colombian Andes: Crystallisation history of three Quaternary volcanoes. Journal of Volcanology and Geothermal Research, 412, 107194. https://doi.org/10.1016/j.jvolgeores.2021.107194
  197. Salazar, S.S.; Muñoz, Y.; Ospino, A. (2017). Analysis of geothermal energy as an alternative source for electricity in Colombia. Geothermal Energy, 5, 27. https://doi.org/10.1186/s40517-017-0084-x
  198. Samacá-Torres, W. (2016). Análisis morfométrico y Geomorfológico de la Caldera de Paletará (Cauca), Colombia. Tesis de maestría, Universidad Nacional de Colombia, Colombia.
  199. Sánchez-Avila, J.I.; García-Sánchez, B.E.; Vara-Castro, G.M.; Kretzschmar, T. (2021). Distribution and origin of organic compounds in the condensates from a Mexican high-temperature geothermal field. Geothermics, 89, 101980. https://doi.org/10.1016/j.geothermics.2020.101980
  200. Sánchez, N.; Pérez-Drago, G.; Pérez, J.; Negre, A.; Medellín, F. (2022). Geothermal-Hydrothermal Modeling of Volcano-Hosted System, Cordillera Central Colombia: Insights for Deep Geothermal Energy Resource Assessment. EAGE GET. The Hague, The Netherlands. https://doi.org/10.3997/2214-4609.202221021
  201. Sánchez-Torres, L.; Toro, A.; Murcia, H.; Borrero, C.; Delgado, R.; Gómez-Arango, J. (2019). El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes. Bulletin of Volcanology, 81, 71.
  202. https://doi.org/10.1007/s00445-019-1337-2
  203. Sánchez-Torres, L.; Murcia, H.; Schonwalder-Ángel, D. (2022). The Northernmost Volcanoes in South America (Colombia, 5–6° N): The Potentially Active Samaná Monogenetic Volcanic Field. Frontiers in Earth Science, 10, 880003. https://doi.org/10.3389/feart.2022.880003
  204. Sano, Y.; Gamo, T.; Williams, S.N. (1997). Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. Journal of Volcanology and Geothermal Research, 77(1-4), 255-265. https://doi.org/10.1016/S0377-0273(96)00098-4
  205. Sawayama, K.; Ishibashi, T.; Jiang, F.; Tsuji, T.; Nishizawa, O.; Fujimitsu, Y. (2021). Scale-independent relationship between permeability and resistivity in mated fractures with natural rough surfaces. Geothermics, 94, 102065. https://doi.org/10.1016/j.geothermics.2021.102065
  206. Shah, M.; Sircar, A.; Vaidya, D.; Sahajpal, S.; Chaudhary, A.; Dhale, S. (2015). Overview of geothermal surface exploration methods. International Journal of Advance Research and Innovative Ideas in Education, 1(4), 55-64.
  207. Shahdi, A.; Lee, S.; Karpatne, A.; Nojabaei, B. (2021). Exploratory analysis of machine learning methods in predicting subsurface temperature and geothermal gradient of Northeastern United States. Geothermal Energy, 9, 18. https://doi.org/10.1186/s40517-021-00200-4
  208. Shamoushaki, M.; Fiaschi, D.; Manfrida, G.; Niknam, P. H.; Talluri, L. (2021). Feasibility study and economic analysis of geothermal well drilling. International Journal of Environmental Studies, 78(6), 1022-1036. https://doi.org/10.1080/00207233.2021.1905309
  209. Shoedarto, R.M.; Tada, Y.; Kashiwaya, K.; Koike, K.; Iskandar, I.; Malik, D.; Bratakusuma, B. (2021). Investigation of meteoric water and parent fluid mixing in a two-phase geothermal reservoir system using strontium isotope analysis: A case study from Southern Bandung, West Java, Indonesia. Geothermics, 94, 102096. https://doi.org/10.1016/j.geothermics.2021.102096
  210. SICA (2021). Estado actual de la geotermia en la región de los países miembros del SICA. Unidad de Coordinación Energética (UCE-SG SICA). Sistema de Integración Centroamericana, Consejo de Ministros de Energía del SICA, Grupo Técnico de Geociencias.
  211. Skoglund, A.; Leijon, M.; Rehn, A.; Lindahl, M.; Waters, R. (2010). On the physics of power, energy and economics of renewable electric energy sources-Part II. Renewable Energy, 35(8), 1735-1740. https://doi.org/10.1016/j.renene.2009.08.031
  212. Sosa-Ceballos, G.; Macías, J.L.; Avellán, D.R.; Arce, J.L.; Saucedo, R.; Boijseauneau-López, M.; García-Sánchez, L.; Reyes-Agustín, G.; Osorio-Ocampo, S. (2019). Genesis of magmas from the Tres Vírgenes volcanic complex, Baja California Sur, Mexico. Lithos, 350-351, 105240. https://doi.org/10.1016/j.lithos.2019.105240
  213. Soltani, M.; Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. (2021). Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews, 140, 110750. https://doi.org/10.1016/j.rser.2021.110750
  214. Strout, A.M. (1977). Energy and economic growth in Central America. Annual Review of Energy, 2(1), 291-305. https://doi.org/10.1146/annurev.eg.02.110177.001451
  215. Sturchio, N.C.; Williams, S.N. (1990). Variations in chemistry of acid-sulfate-chloride springs at Nevado del Ruíz volcano, Colombia: November 1985 through December 1988. Journal of Volcanology and Geothermal Research, 42(1-2), 203-210. https://doi.org/10.1016/0377-0273(90)90077-S
  216. Suherlina, L.; Newson, J.; Kamah, Y.; Brehme, M. (2022). The dynamic evolution of the Lahendong geothermal system in North-Sulawesi, Indonesia. Geothermics, 105, 102510. https://doi.org/10.1016/j.geothermics.2022.102510
  217. Taborda, A.; Portela, J.P.; López-Sánchez, J.; Daniele, L.; Moreno, D.; Blessent, D. (2022). Temperature estimation of the Nevado del Ruiz Volcano geothermal reservoir: Insight from western hot springs hydrogeochemistry. Journal of Geochemical Exploration, 240, 107049. https://doi.org/10.1016/j.gexplo.2022.107049
  218. Tampubolon, T.; Yanti, J.; Juliani, R.; Hutahaean, J. (2023). The influence of Mount Sinabung eruption on the geothermal in Tinggi Raja Simalungun. Physics and Chemistry of the Earth, Parts A/B/C, 129, 103290. https://doi.org/10.1016/j.pce.2022.103290
  219. Taussi, M.; Tardani, D.; Tassi, F.; Gorini, A.; Aguilera, E.; Capaccioni, B.; Renzulli, A. (2023). A conceptual model for the Tufiño-Chiles-Cerro Negro (TCCN) geothermal system (Ecuador-Colombia): New insights into geothermal exploration from chemical and isotopic composition of hydrothermal fluids. Journal of Geochemical Exploration, 249, 107214. https://doi.org/10.1016/j.gexplo.2023.107214
  220. Thanassoulas, C. (1991). Geothermal exploration using electrical methods. Geoexploration, 27(3-4), 321-350. https://doi.org/10.1016/0016-7142(91)90005-W
  221. Timmons, D.; Harris, J.M.; Roach, B. (2014). The economics of renewable energy: A GDAE teaching module on social and environmental issues in economics. Tufts University.
  222. Tomasini-Montenegro, C.; Santoyo-Castelazo, E.; Gujba, H.; Romero, R.J.; Santoyo, E. (2017). Life cycle assessment of geothermal power generation technologies: An updated review. Applied Thermal Engineering, 114, 1119-1136. https://doi.org/10.1016/j.applthermaleng.2016.10.074
  223. Toro, A.; Murcia, H.; Sánchez-Torres, L. (2025). Magmatic evolution of basaltic rear-arc monogenetic volcanism in southern Colombia. Journal of Volcanology and Geothermal Research, 462, 108312. https://doi.org/10.1016/j.jvolgeores.2025.108312
  224. Torres, M.P.; Monsalve, M.L.; Pulgarín, B.; Cepeda, H. (1999). Caldera de Paletará: aproximación a la fuente de las ignimbritas del Cauca y Huila (Colombia). Boletín Geológico, 37(1-3), 1-15. https://doi.org/10.32685/0120-1425/bolgeol37.1-3.1999.35
  225. Torres-Cerón, D.A.; Acosta-Medina, C.D.; Restrepo-Parra, E. (2019). Geothermal and mineralogic analysis of hot springs in the Puracé-La Mina sector in Cauca, Colombia. Geofluids. https://doi.org/10.1155/2019/3191454
  226. Urrea, D.; Moreno, D.; López-Sánchez, J.; Blessent, D. (2024). Analysis of fractures generated by faults at micro-and macro-scale and the influence on the secondary permeability: application to the Nevado del Ruiz area (Colombia). Environmental Earth Sciences, 83(8), 253. https://doi.org/10.1007/s12665-024-11512-6
  227. Urueña-Suárez, C.L.; Peña-Urueña, M.L.; Muñoz-Rocha, J.A.; Rayo-Rocha, L.P.; Villamizar-Escalante, N.; Amaya-Ferreira, S.; Ibáñez-Mejía, M.; Bernet, M. (2020). Zircon U–Pb and fission–track dating applied to resolving sediment provenance in modern rivers draining the Eastern and Central Cordilleras, Colombia. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 469-490). Volume 3, Chapter 16. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.16
  228. van der Meer, F.; Hecker, C.; van Ruitenbeek, F.; van der Werff, H.; de Wijkerslooth, C.; Wechsler, C. (2014). Geologic remote sensing for geothermal exploration: A review. International Journal of Applied Earth Observation and Geoinformation, 33, 255-269. https://doi.org/10.1016/j.jag.2014.05.007
  229. Vargas-Arcila, L.; Murcia, H.; Osorio-Ocampo, S.; Sánchez-Torres, L.; Botero-Gómez, L.A.; Bolaños, G. (2023). Effusive and evolved monogenetic volcanoes: two newly identified (~ 800 ka) cases near Manizales City, Colombia. Bulletin of Volcanology, 85(7), 42. https://doi.org/10.1007/s00445-023-01655-y
  230. Vargas, C.; Koulakov, I.; Jaupart, C.; Gladkov, V.; Gómez, E.; El Khrepy, S.; Al-Arifi, N. (2017). Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Scientific Reports, 7(1), 46094. https://doi.org/10.1038/srep46094
  231. Vargas, C.A.; Ochoa, L.H.; Caneva, A. (2019). Estimation of the thermal structure beneath the volcanic arc of the Northern Andes by coda wave attenuation tomography. Frontiers in Earth Science, 7, 208. https://doi.org/10.3389/feart.2019.00208
  232. Vega-Salazar, E.J. (2014). Aporte al modelo geológico del Valle de las Nereidas. Tesis de grado, Universidad de Caldas, Colombia.
  233. Velandia, F.; Salazar, E.; Pulgarín, B.; Forero, H.; Hincapié, G. (2008). Estratigrafía de los depósitos volcánicos del Altiplano Nariñense, Colombia. Geología Colombiana, 33, 57-68.
  234. Velandia-Ramos, J.F. (2016). Propuesta de mapa de ruta para la incursión de la energía geotérmica en la canasta energética colombiana. Tesis de grado, Universidad de Los Andes, Colombia.
  235. Velásquez-Piedrahita, A. (2015). Formulación de una propuesta de aprovechamiento de la energía geotérmica del proyecto nereidas del macizo volcánico del Ruiz como estrategia de mitigación del cambio climático. Tesis de maestría, Universidad Tecnológica de Pereira, Colombia.
  236. Vieira, F.P.; Hamza, V.M. (2014). Advances in assessment of geothermal resources of South America. Natural Resources, 5(14), 897. https://doi.org/10.4236/nr.2014.514077
  237. Wohletz, K.; Heiken, G. (1992). Volcanology and geothermal energy. Vol. 432. University of California Press.
  238. Wong, K.V.; Tan, N. (2015). Feasibility of using more geothermal energy to generate electricity. Journal of Energy Resources Technology, 137(4), 041201. https://doi.org/10.1115/1.4028138
  239. Xu, W.; Huang, S.; Zhang, J.; Zuo, Y.; Zhou, Y.; Ke, T.; Yu, R.; Li, Y. (2021). Geothermal gradient and heat flow of the Erlian Basin and adjacent areas, Northern China: geodynamic implication. Geothermics, 92, 102049. https://doi.org/10.1016/j.geothermics.2021.102049
  240. Yáñez, G.; Muñoz, M.; Flores-Aqueveque, V.; Bosch, A. (2015). Gravity derived depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards. Andean Geology, 42(2), 147-172. http://doi.org/10.5027/andgeoV42n2-a01
  241. Zayed, M.E.; Shboul, B.; Yin, H.; Zhao, J.; Zayed, A.A. (2023). Recent advances in geothermal energy reservoirs modeling: Challenges and potential of thermo-fluid integrated models for reservoir heat extraction and geothermal energy piles design. Journal of Energy Storage, 62, 106835. https://doi.org/10.1016/j.est.2023.106835
  242. Zollweg, J.E. (1990). Seismicity following the 1985 eruption of Nevado del Ruiz, Colombia. Journal of Volcanology and Geothermal Research, 41(1-4), 355-367. https://doi.org/10.1016/0377-0273(90)90096-X