Vol. 47 No. 1 (2025): Boletín de Geología
Artículos científicos

Geological modelling for CO2 storage potential estimation in an area located south of the Lower Magdalena Valley Basin, Colombia

Jose David Gómez-Ruiz
Universidad Nacional de Colombia
Carlos Alberto Vargas-Jiménez
Universidad Nacional de Colombia
Jorge Fabricio Cómbita-Quigua
Fundación Universidad de América

Published 2025-05-06

Keywords

  • CO2 sequestration,
  • LMV,
  • Deep saline aquifer,
  • Volume estimation,
  • Uncertainty analysis

How to Cite

Gómez-Ruiz, J. D., Vargas-Jiménez, C. A., & Cómbita-Quigua, J. F. (2025). Geological modelling for CO2 storage potential estimation in an area located south of the Lower Magdalena Valley Basin, Colombia. Boletín De Geología, 47(1), 93–103. https://doi.org/10.18273/revbol.v47n1-2025004

Altmetrics

Abstract

The results of geological modeling to assess the CO2 sequestration potential in the southern part of the Lower Magdalena Valley are presented. Using correlations, petrophysical analysis, evaluation of pressure and temperature gradients, seismic interpretation, and statistical calculations, a deterministic capacity of 7,58 MtCO2eq was estimated. In a stochastic approach, significant variability is revealed, indicating that the storage capacity could range from 0,82 MtCO2eq (P90) to 15,28 MtCO2eq (P10). The data support the Ciénaga de Oro Formation as a suitable reservoir for CO2 sequestration. However, detailed analysis of the structure, corresponding to an inversion anticline, and capacity estimates lead to the dismis­sal of the project’s feasibility in the area. In summary, while the reservoir’s suitability is confirmed, considerations suggest significant limitations for the implementation of CO2 sequestration in the studied area.

Downloads

Download data is not yet available.

References

  1. Ajayi, T.; Gomes, J.S.; Bera, A. (2019). A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Petroleum Science, 16, 1028-1063. https://doi.org/10.1007/s12182-019-0340-8
  2. Al-Khdheeawi, E.A.; Mahdi, D.S.; Ali, M.; Iglauer, S.; Barifcani, A. (2021). Reservoir scale porosity-permeability evolution in sandstone due to CO2 geological storage. 15th Greenhouse Gas Control Technologies Conference. https://doi.org/10.2139/ssrn.3818887
  3. Ali, M.; Yekeen, N.; Pal, N.; Keshavarz, A.; Iglauer, S.; Hoteit, H. (2021). Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage. Energy Reports, 7, 5988-5996. https://doi.org/10.1016/j.egyr.2021.09.016
  4. Ali, M.; Jha, N.K.; Pal, N.; Keshavarz, A.; Hoteit, H.; Sarmadivaleh, M. (2022). Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth-Science Reviews, 225, 103895. https://doi.org/10.1016/j.earscirev.2021.103895
  5. Anthonsen, K.L.; Bernstone, C.; Feldrappe, H. (2014). Screening for CO2 storage sites in Southeast North Sea and Southwest Baltic Sea. Energy Procedia, 63, 5083-5092. https://doi.org/10.1016/j.egypro.2014.11.538
  6. Arif, M.; Abu-Khamsin, S.A.; Iglauer, S. (2019). Wettability of rock/CO2/brine and rock/ oil/ CO2-enriched-brine systems: critical parametric analysis and future outlook. Advances in Colloid and Interface Science, 268, 91-113. https://doi.org/10.1016/j.cis.2019.03.009
  7. Arminio, J.F.; Yoris, F.; Porras, L.; García, E.; Diluca, M. (2011). Petroleum geology of Colombia, Lower Magdalena. Fondo Editorial Universidad EAFIT-ANH.
  8. Asante, J.; Ampomah, W.; Rose-Coss, D.; Cather, M.; Balch, R. (2021). Probabilistic assessment and uncertainty analysis of CO2 storage capacity of the Morrow B Sandstone—Farnsworth field unit. Energies, 14(22), 7765. https://doi.org/10.3390/en14227765
  9. Asquith, G.B; Gibson, C.R. (1982). Basic well log analysis for geologists. AAPG. https://doi.org/10.1306/Mth3425
  10. Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87-102. https://doi.org/10.1016/S0196-8904(01)00009-7
  11. Bachu, S. (2003). Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology, 44(3), 277-289. https://doi.org/10.1007/s00254-003-0762-9
  12. Barrero-Espinosa, F.A. (2021). ¿Existe en Colombia una política pública y regulación que permitan la implementación de tecnología CCS? Tesis de maestría, Universidad Externado de Colombia. https://doi.org/10.57998/bdigital.handle.001.5324
  13. Bernal-Olaya, R.; Mann, P.; Escalona, A. (2015). Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An example of an under-to overfilled forearc basin. In: C. Bartonili, P. Mann (eds.). Petroleum Geology and Potential of the Colombian Caribbean Margin (pp. 345-397). Vol. 108, AAPG Memoir. https://doi.org/10.1306/13531943M1083645
  14. Blunt, M.; Fayers, F.J.; Orr Jr; F.M. (1993). Carbon dioxide in enhanced oil recovery. Energy Conversion and Management, 34(9-11), 1197-1204. https://doi.org/10.1016/0196-8904(93)90069-M
  15. Dueñas, H.; Duque, H. (1981). Geología del cuadrángulo F-8, Planeta Rica. Boletín Geológico, 24(1), 1-36. https://doi.org/10.32685/0120-1425/bolgeol24.1.1981.264
  16. Edwards, R.W.J.; Celia, M.A.; Bandilla, K.W.; Doster, F.; Kanno, C.M. (2015). A model to estimate carbon dioxide injectivity and storage capacity for geological sequestration in shale gas wells. Environmental Science & Technology, 49(15), 9222-9229. https://doi.org/10.1021/acs.est.5b01982
  17. Flinch, J.F. (2003). Structural evolution of the Sinú-Lower Magdalena area (northern Colombia). In: C. Bartolini, R.T. Buffler, J. Blickwede (eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (pp. 776-796). Vol. 79, AAPG Memoir.
  18. Global Energy Monitor. (2022). Global Gas Infrastructure Tracker Gas Pipelines [January 2022]. https://globalenergymonitor.org/projects/global-gas-infrastructure-tracker/
  19. Granado, P.; Ruh, J. B. (2019). Numerical modelling of inversion tectonics in fold-and-thrust belts. Tectonophysics, 763, 14-29. https://doi.org/10.1016/j.tecto.2019.04.033
  20. Hall, G. (2012). The US 2012 Carbon Utilization and Storage Atlas. US Department of Energy. https://doi.org/10.2172/1814016
  21. IPCC (2005). Carbon Dioxide Capture and Storage: A Summary of the IPCC Special Report. IPCC.
  22. Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. (2019). An overview of the status and challenges of CO2 storage in minerals and geological formations. Frontiers in Climate, 1, 9. https://doi.org/10.3389/fclim.2019.00009
  23. Kimball, J. (2010). Colombiana Cerro Matoso ve caída en producción níquel 1er trimestre. https://www.reuters.com/article/mineria-colombia-cerromatoso-idARN0414892820100604/
  24. Mariño-Martínez, J.E.; Moreno-Reyes, L.E. (2018). Posibilidades de captura y almacenamiento geológico de CO2 (CCS) en Colombia – caso Tauramena (Casanare). Boletín de Geología, 40(1), 109-122. https://doi.org/10.18273/revbol.v40n1-2018007
  25. Mora-Bohórquez, J.A.; Ibanez-Mejia, M.; Oncken, O.; de Freitas, M.; Vélez, V.; Mesa, A.; Serna, L. (2017). Structure and age of the Lower Magdalena Valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. Journal of South American Earth Sciences, 74, 1-26. https://doi.org/10.1016/j.jsames.2017.01.001
  26. Mora-Bohórquez, J.A.; Oncken, O.; Le Breton, E.; Ibañez-Mejia, M.; Veloza, G.; Mora, A.; Vélez, V.; De Freitas, M. (2020). Formation and evolution of the Lower Magdalena Valley Basin and San Jacinto fold belt of northwestern Colombia: Insights from Upper Cretaceous to recent tectono-stratigraphy. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 21-66). Vol. 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.02
  27. Nielsen, C.M.; Frykman, P.; Dalhoff, F. (2015). How to characterize a potential site for CO2 storage with sparse data coverage - a Danish onshore site case. Oil and Gas Science and Technology, 70(4), 587- 598. https://doi.org/10.2516/ogst/2015008
  28. SGC; ANH. (2021). Mapa geológico a escala 1:50.000 con información del subsuelo de las cuencas sedimentarias del Valle Inferior de Magdalena y Sinú San Jacinto (VIM-SSJ). Dirección de Geociencias Básica, Servicio Geológico Colombiano, Agencia Nacional de Hidrocarburos.
  29. South 32 Cerro Matoso (2021). Informe de sostenibilidad 2021. South32. Consultado el 26 de septiembre de 2024.
  30. Vail, P.R.; Mitchum Jr, R.M. (1979). Global cycles of relative changes of sea level from seismic stratigraphy. In: J.S. Watkins, L. Montadert, P.W. Dickerson (eds.). Geological and Geophysical Investigations of Continental Margins (pp. 469-472). AAPG Memoir. https://doi.org/10.1306/M29405C32
  31. Yu, K.M.K.; Curcic, I.; Gabriel, J.; Tsang, S.C.E. (2008). Recent advances in CO2 capture and utilization. ChemSusChem Chemistry & Sustainability Energy & Materials, 1(11), 893-899. https://doi.org/10.1002/cssc.200800169
  32. Zheng, H.; Zhong, Y.; Mao, Z.; Zheng, L. (2018). CO2 utilization for the waterless dyeing: characterization and properties of disperse red 167 in supercritical fluid. Journal of CO2 Utilization, 24, 266-273. https://doi.org/10.1016/j.jcou.2018.01.014