Vol. 47 No. 1 (2025): Boletín de Geología
Artículos científicos

Lithologic and biostratigraphical characterization of the Toluviejo Formation: Contributions about the paleoenvironments of the Eocene carbonate platforms from northern Colombia

German David Patarroyo
Stratos Consultoría Geológica
Juan Sebastián Plata
Universidad Industrial de Santander
Sergio Andrés Suárez
Universidad Industrial de Santander
Gustavo Adolfo Torres
Stratos Consultoría Geológica
Gabriel Veloza
Hocol
Josué Alejandro Mora-Bohórquez
Hocol
Diego Fernando Gómez
Stratos Consultoría Geológica
José Manuel Torres
Florida International University

Published 2025-05-06

Keywords

  • Carbonates,
  • San Jacinto Fold Belt,
  • Geochemistry,
  • Paleoenvironments,
  • Paleogene,
  • Petrography
  • ...More
    Less

How to Cite

Patarroyo, G. D., Plata, J. S., Suárez, S. A., Torres, G. A., Veloza, G., Mora-Bohórquez, J. A., Gómez, D. F., & Torres, J. M. (2025). Lithologic and biostratigraphical characterization of the Toluviejo Formation: Contributions about the paleoenvironments of the Eocene carbonate platforms from northern Colombia. Boletín De Geología, 47(1), 43–61. https://doi.org/10.18273/revbol.v47n1-2025002

Altmetrics

Abstract

This study aims to understand the paleoenvironmental conditions of the Toluviejo Formation (San Jacinto Fold Belt, Colombian Caribbean). To achieve this a petrographic analysis of the El Hueso section (Córdoba, Colombia), as well as a geochemical evaluation of some elements present in the rock (Sr, Ba, Fe, Ca, V, Cu, Al) were conducted. The petrographic analyses reveal that the sedimentary succession is mainly composed of bioclastic limestones (grainstone), dominated by large benthic foraminifers (families Nummulitidae, Lepidocyclinidae, Soritiidae, and Discocyclinidae), and calcareous algae, with a moderate to low degree of diagenesis in some samples. The foraminiferal assemblages indicate a middle Eocene (Late Lutetian to Bartonian) age, which agrees with age definitions for other sections of this unit. Petrofacial analysis identifies 3 groups based on variations in the proportions of large benthic foraminifers and calcareous algae, indicative of a middle carbonate ramp. Although the lithology and composition of the El Hueso section are generally homogeneous, the variations in its main bioclasts, as well as the Fe/Ca and Sr/Ba geochemical ratios, suggest minor changes in the energy conditions, terrigenous input, and paleosalinity (probably linked to eustatic variations) for the basal part of the succession. Furthermore, the degree of bioclast preservation and the distribution of elements sensitive to bottom water oxygenation variations (V/Al, Cu/Al) indicate low-stress paleoenvironmental conditions.

Downloads

References

  1. Adams, A.; Mackenzie, W. (1998). A colour atlas of carbonate sediments and rocks under the microscope. Manson Publishing.
  2. Alfonso, M.; Herrera, J.M.; Navarrete, R.E.; Bermúdez, H.D.; Calderón, J.E.; Parra, F.E.; Sarmiento, G.; Vega, F.; Perrilliat, M. (2009). Cartografía geológica, levantamiento de columnas estratigráficas, toma de muestras y análisis bioestratigráficos. Sector de Chalán, Cuenca Sinú–San Jacinto. ANH–ATG, Bogotá.
  3. Baumgartner-Mora, C.; Baumgartner, P.O.; Salazar. E.A.; Rincón-Martínez, D. (2015). Larger benthic foraminifera of Paleogene carbonate banks, Caribbean Colombia – Ages and paleoenvironmental implications. 20th Caribbean Geological Conference, Trinidad y Tobago.
  4. Bermúdez, H.D.; Grajales, J.A.; Restrepo, L.C.; Rosero, J.S. (2009). Estudio integrado de los núcleos y registros obtenidos de los pozos someros tipo “slim holes” en la cuenca del Sinú. Tomo 1, Anexo 1. Bogotá. ANH – Universidad de Caldas.
  5. BouDagher-Fadel, M. (2018). Evolution and geological significance of larger Benthic Foraminifera. 2nd Edition. UCL Press. https://doi.org/10.14324/111.9781911576938
  6. Butterlin, J. (1988). A reexamination of the stratigraphic distribution of the larger Foraminifera in the Caribbean region during the Paleogene and Miocene periods and the implications on the geodynamic history of this region. 11th Caribbean Geological Conference, Bridgetown, Barbados.
  7. Canudo, J. (2004). Algas Calcáreas. In: E. Molina (ed). Micropaleontología (pp. 365-384). Prensas Universitarias de Zaragoza.
  8. Cardona, A.; Montes, C.; Ayala, C.; Bustamante, C.; Hoyos, N.; Montenegro, O.; Ojeda, C.; Niño, H.; Ramírez, V.; Valencia, V.; Rincón, D.; Vervoort, J.; Zapata, S. (2012). From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean–South America plate boundary. Tectonophysics, 580, 58-87. https://doi.org/10.1016/j.tecto.2012.08.039
  9. Caro, M.; Spratt, D. (2003). Tectonic evolution of the San Jacinto Fold Belt, NW Colombia. CSEG, 2(2), 36-43.
  10. Cediel, F.; Shaw, R.P.; Cáceres, C. (2003). Tectonic assembly of the northern Andean Block. In: C. Bartolini, R.T. Buffler, J. Blickwede (ed). The circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (pp 815-848). AAPG, Memoir 79.
  11. Dummann, W.; Hofmann, P.; Herrle, J.O.; Wennrich, V.; Wagner, T. (2021). A refined model of Early Cretaceous South Atlantic–Southern Ocean gateway evolution based on high-resolution data from DSDP Site 511 (Falkland Plateau). Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110113. https://doi.org/10.1016/j.palaeo.2020.110113
  12. Dunham, R.I. (1962). Classification of carbonate rocks according to depositional texture. In: W.E. Ham (ed.). Classification of carbonate rocks (pp. 108-121). Memoir I. AAPG.
  13. Duque-Caro, H. (1967). Informe Bioestratigráfico preliminar de los cuadrángulos D-8 y E-8. Informe 1522. Servicio Geológico Nacional. Bogotá.
  14. Duque-Caro, H. (1968). Observaciones generales a la bioestratigrafía y geología regional en los departamentos de Bolívar y Córdoba. Boletín de Geología, 24, 71-87.
  15. Duque-Caro, H. (1972a). Ciclos tectónicos y sedimentarios de Colombia y sus relaciones con la paleoecología. Boletín Geológico, 19(3), 1-23.
  16. Duque-Caro, H. (1972b). Relaciones entre la bioestratigrafía y la cronoestratigrafía en el llamado Geosinclinal de Bolívar. Boletín Geológico, 19(3), 25-68.
  17. Duque-Caro, H. (1975). Los foraminíferos planctónicos y el Terciario de Colombia. Revista Española de Micropaleontología, 7(3), 403-427.
  18. Duque-Caro, H. (1984). Estilo estructural, diapirismo y episodios de acrecimiento del terreno Sinú – San Jacinto en el Noroccidente de Colombia. Boletín Geológico, 27(2), 1-29.
  19. Duque-Caro, H.; Guzmán, G.; Hernández, O. (1996). Geología de la plancha 38: Informe No. 2188. INGEOMINAS, Bogotá, Colombia.
  20. Flügel, E. (2004). Microfacies of carbonate rocks. Springer-Verlag Berlin Heidelberg.
  21. GEOTEC (2003). Geología de los cinturones Sinú - San Jacinto, planchas 50 Puerto Escondido, 51 Lorica, 59 Mulatos, 60 Canalete, 61 Montería, 69 Necoclí, 70 San Pedro de Urabá, 71 Planeta Rica, 79 Turbo, 80 Tierralta. Escala 1:100.000 Memoria Explicativa. Ingeominas. Bogotá.
  22. González, R.; Oncken, O.; Faccenna, C.; Le Breton, E.; Bezada, M.; Mora, A. (2023). Kinematics and convergent tectonics of the Northwestern South American plate during the Cenozoic. Geochemistry, Geophysics, Geosystems, 24(7), 1-32. https://doi.org/10.1029/2022GC010827
  23. Govin, A.; Holzwarth, U.; Heslop, D.; Ford-Keeling, L.; Zabel, M.; Mulitza, S.; Collins, J.A.; Chiessi, C.M. (2012). Distribution of major elements in Atlantic surface sediments (36°N-49°S): Imprint of terrigenous input and continental weathering. Geochemistry, Geophysics, Geosystems, 13(1), Q01013. https://doi.org/10.1029/2011gc003785
  24. Gradstein, F.; Ogg, J.G.; Schmitz, M.; Ogg, G. (2020). Geologic Time Scale 2020. 2 volume book. Elsevier BV.
  25. Guzmán, G.; Gómez, E.; Serrano, B. (2004). Geología de los cinturones del Sinú, San Jacinto y borde occidental del Valle Inferior del Magdalena Caribe Colombiano. Escala 1:300.000. Informe. INGEOMINAS.
  26. Ingersoll, R.; Bullard, T.; Ford, R.; Grimm, J.; Pickle, J.; Sares, S. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1), 103-116. https://doi.org/10.1306/212f83b9-2b24-11d7-8648000102c1865d
  27. Kujau, A.; Nürnberg, D.; Zielhofer, C.; Bahr, A.; Röhl, U. (2010). Mississippi River discharge over the last ~560,000 years — Indications from X-ray fluorescence core-scanning. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(3-4), 311-318. https://doi.org/10.1016/j.palaeo.2010.10.005
  28. Martini, E. (1971). Standard tertiary and quaternary calcareous nannoplankton zonation. II Planktonic Conference, Roma, Italia.
  29. Mitchell, S.; Robinson, E.; Özcan, E.; Jiang, M.; Robinson, N. (2022). A larger benthic foraminiferal zonation for the Eocene of the Caribbean and central American region. Carnets de Géologie (Notebooks on Geology), 22(11), 409-565. https://doi.org/10.2110/carnets.2022.2211
  30. Mora-Bohórquez, J.A.; Oncken, O.; Le Breton, E.; Ibáñez-Mejía, M.; Faccena, C.; Veloza, G.; Vélez, V.; De Freitas, M.; Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectono-stratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean plateau collision and flat subduction. Tectonics, 36(11), 2599-2629. https://doi.org/10.1002/2017TC004612
  31. Mora-Bohórquez, J.A.; Oncken, O.; Le Breton, E.; Ibáñez-Mejía, M.; Veloza, G.; Mora, A.; Vélez, V.; De Freitas, M. (2020). Formation and evolution of the Lower Magdalena Valley Basin and San Jacinto fold belt of northwestern Colombia: Insights from Upper Cretaceous to recent tectono–stratigraphy. In: J. Gómez, D. Mateus-Zabala (ed). The Geology of Colombia (pp. 21-66). Volume 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.02
  32. Mora-Bohórquez, J.A.; Moreno, F.; Ibáñez, M.; Santamaría, L.; Ramírez, R.; Barbosa, J.C.; Góngora, J.D.; Sierra, D.; Veloza, G. (2025). Dating the Chengue/Arroyo de Piedra formation of the northern San Jacinto fold belt: Results of the application of In-Situ U-Pb carbonate geochronology. Journal of South American Earth Sciences, 153, 105355. https://doi.org/10.1016/j.jsames.2025.105355
  33. Norris, R.; Turner, S.; Hull, P.; Ridgwell, A. (2013). Marine ecosystem responses to Cenozoic global change. Science, 341(6145), 492-498. https://doi.org/10.1126/science.1240543
  34. Ortiz, A.; Blanco, A.; Corredor, G. (1998). Calidad de reservorio de las calizas de las formaciones Toluviejo y Ciénaga de Oro, Subcuenca Sinú–San Jacinto, Cuenca Caribe Colombiana. Instituto Colombiano del Petróleo - Ecopetrol.
  35. Raigosa, M. (2018). Caracterización estratigráfica, microfacial y diagenética de las formaciones Toluviejo y El Floral en la región onshore del Cinturón Plegado Sinú-San Jacinto. Servicio Geológico Colombiano.
  36. Rosero, S.; Silva, J.C.; Sial, A.N.; Borrero, C.; Pardo, A. (2014). Quimioestratigrafía de isótopos de estroncio de algunas sucesiones del Eoceno–Mioceno del cinturón de San Jacinto y el Valle Inferior del Magdalena. Boletín de Geología, 36(1), 15-27.
  37. Salazar-Franco, A.M.; Silva-Tamayo, J.C.; Bayona, G.; Méndez-Duque, J.; Lara, M. (2016). Chemostratigraphy of upper Eocene – lower Oligocene carbonate successions in the Southern Caribbean Margin (San Jacinto deformed belt of Colombia). XII Simposio de Exploración Petrolera en Cuencas Subandinas, Bogotá.
  38. Salazar-Ortiz, E.A.; Rincón-Martínez, D.; Páez, L.A.; Restrepo, S.M.; Barragán, S. (2020a). Middle Eocene mixed carbonate-siliciclastic systems in the southern Caribbean (NW Colombian margin). Journal of South American Earth Sciences, 99, 102507. https://doi.org/10.1016/j.jsames.2020.102507
  39. Salazar-Ortiz, E.; Numpaque, J.; Bernal, L.; Ocampo, E.; Matajira, A.; Villabona, J.; Gómez, D.; García, G.; Méndez, S.; Martínez, E.; Sánchez, D.; Sotelo, A.P.; Aguirre, L. (2020b). Geología del área Sinú – San Jacinto, Planchas 23, 24, 30, 31 y parte de las planchas 37 y 38 a escala 1:50.000. Servicio Geológico Colombiano.
  40. Scholle, P.; Ulmer-Scholle, D. (2003). A color guide to the petrography of carbonate rocks. AAPG Memoir. https://doi.org/10.1306/M77973
  41. Serra-Kiel, J.; Hottinger L.; Caus, E.; Drobne, K.; Ferràndez, C.; Kumar-Jauhri, A.; Less, G.; Pavlovec, R.; Pignatti, J.; Samsó, J.M.; Schaub H.; Sirel, E.; Strougo, A.; Tambareau, Y.; Tosquella, J.; Zakrevskaya, E. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France, 169(2), 281-299.
  42. Silva-Tamayo, J.C.; Rincón-Martínez, D.; Barrios, L.M.; Torres-Lasso, J.C.; Osorio-Arango, C. (2020). Cenozoic marine carbonate systems of Colombia. In: J. Gómez-Tapias, D. Mateus-Zabala (ed). The Geology of Colombia (pp. 249-282). Volume 3, Chapter 9. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.09
  43. Speijer, R.P.; Pälike, H.; Hollis, C.J.; Hooker, J.J.; Ogg, J.G.G. (2020). The Paleogene Period. In: F.M. Gradstein, J.G. Ogg, M. Schmitz, G. Ogg (ed.). The Geologic Time Scale 2020 (pp. 1087-1140). Elsevier.
  44. Wade, B.S.; Pearson, P.N.; Berggren, W.A.; Pälike, H. (2011). Review and revision of Cenozoic tropical planktonic biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104(1-3), 111-142. https://doi.org/10.1016/j.earscirev.2010.09.003
  45. Wei, W.; Algeo, T.J. (2020). Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica et Cosmochimica Acta, 287, 341-366. https://doi.org/10.1016/j.gca.2019.06.034
  46. Werenfels, A. (1926). A stratigraphical section through the Tertiary Toluviejo, Colombia. Eclogea Geologicae Helvetiae, 20(1), 79-83.
  47. Yelwa, N.A.; Mustapha, K.A.; Opuwari, M.; Aziz, A.A. (2022). Biomarkers, stable carbon isotope, and trace element distribution of source rocks in the Orange Basin, South Africa: implications for paleoenvironmental reconstruction, provenance, and tectonic setting. Journal of Petroleum Exploration and Production Technology, 12, 307-339. https://doi.org/10.1007/s13202-021-01317-9
  48. Zamagni, J.; Mutti, M.; Košir, A. (2012). The evolution of mid Paleocene-early Eocene coral communities: How to survive during rapid global warming. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318, 48-65. https://doi.org/10.1016/j.palaeo.2011.12.010