EFECTO DE LAS DISPERSIONES ACUOSAS DE ÓXIDO DE GRAFENO SOBRE LA HUMECTABILIDAD DE LAS ROCAS
Publicado 2024-04-12
Palabras clave
- Modificador de Permeabilidad,
- Mojabilidad de Rocas,
- Óxido de Grafeno
Cómo citar
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
Entre los diversos métodos para mejorar la recuperación de petróleo de los yacimientos (estimulación de pozos), el uso de nanofluidos ha surgido como una alternativa prometedora para modificar la mojabilidad y permeabilidad de las rocas de arenisca. Por esta razón, en este estudio, se sintetizó óxido de grafeno (GO) a partir de grafito y se formuló un nanofluido utilizando GO disperso en agua para evaluar su capacidad para modificar la mojabilidad en núcleos de arenisca de yacimientos colombianos. El montaje experimental incluyó tres pruebas preliminares: mojabilidad visual, mediciones del ángulo de contacto y detergencia. Los resultados demostraron un aumento en la mojabilidad al agua de las rocas, lo que llevó a una disminución del ángulo de contacto del sistema agua-roca de hasta un 42.6%. Además, las pruebas de mojabilidad visual y detergencia arrojaron resultados positivos, indicando que el óxido de grafeno es un modificador efectivo de la mojabilidad, haciendo que la roca sea más mojada por agua.
Descargas
Referencias
- Aftab, A., Ismail, A. R., & Ibupoto, Z. H. (2017). Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egyptian Journal of Petroleum, 26(2), 291–299. https://doi.org/10.1016/j.ejpe.2016.05.004
- Ammar, A., Al-Enizi, A. M., Al-Maadeed, M., & Karim, A. (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry, 9(2), 274–286. https://doi.org/10.1016/j.arabjc.2015.07.006
- Bennett, B., Buckman, J.O., Bowler, B., & Larter, S. R. (2004). Wettability alteration in petroleum systems: the role of polar non-hydrocarbons. Petroleum Geoscience, 10(3), 271–277. https://doi.org/10.1144/1354-079303-606
- Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: a new emerging lubricant. Materials Today, 17(1), 31–42. https://doi.org/10.1016/j.mattod.2013.12.003
- Chun, H., Zhiqiang, T., & Guancheng, J. (1999). Effect of wettability on water injection recovery factor of heavy oil reservoir of Kendong Block 29. Oil Drilling & Production Technology, 21(3), 92-94.
- Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460. https://doi.org/10.1038/nature06016
- Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/b917103g
- Dumée, L. F., He, L., Wang, Z., Sheath, P., Xiong, J., Feng, C., Tan, M.Y., She, F., Duke, M., Gray, S., Pacheco, A., Hodgson, P., Majumder, M., & Kong, L. (2015). Growth of nano-textured graphene coatings across highly porous stainless steel supports towards corrosion resistant coatings. Carbon, 87, 395–408. https://doi.org/10.1016/j.carbon.2015.02.042
- Espinoza, J. M. (2014). Daño a la formación en pozos petroleros, Bachelor’s thesis, Universidad Nacional Autónoma de México. https://hdl.handle.net/20.500.14330/TES01000715173
- Fang, S., Chen, T., Wang, R., Xiong, Y., Chen, B., & Duan, M. (2016). Assembly of Graphene Oxide at the Crude Oil/Water Interface: A New Approach to Efficient Demulsification. Energy & Fuels, 30(4), 3355–3364. https://doi.org/10.1021/acs.energyfuels.6b00195
- Franco, C. A., Zabala, R. D., & Cortés, F. B. (2017). Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39–55. https://doi.org/10.1016/j.petrol.2017.07.004
- Geng, Y., Wang, S. J., & Kim, J-K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 336(2), 592–598. https://doi.org/10.1016/j.jcis.2009.04.005
- Gómez, I. (2012). Síntesis y caracterización de grafeno químicamente reducido, empleando técnicas espectroscópicas y microscopía electrónica de barrido, Bachelor’s tesis - Universidad Industrial de Santander.
- Guo, H-L., Wang, X-F., Qian, Q-Y., Wang, F.-B, & Xia, X-H. (2009). A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano, 3(9), 2653–2659. https://doi.org/10.1021/nn900227d
- Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Chang, Q., & Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204. https://doi.org/10.1016/j.memsci.2014.11.043
- Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society, 132(23), 8180–8186. https://doi.org/10.1021/ja102777p
- Kumar, H.V., Huang, K. Y-S., Ward, S. P., & Adamson, D. H. (2017). Altering and investigating the surfactant properties of graphene oxide. Journal of Colloid and Interface Science, 493, 365–370. https://doi.org/10.1016/j.jcis.2017.01.043.
- Liu, R., Gong, T., Zhang, K., & Lee, C. (2017). Graphene oxide papers with high water adsorption capacity for air dehumidification. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09777-y
- Liu, C., Yang, J., Tang, Y., Yin, L., Tang, H., & Li, C. (2015). Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 10–16. https://doi.org/10.1016/j.colsurfa.2014.12.005
- Liu, Y., Zhou, J., Zhu, E., Tang, J., Liu, X., & Tang, W. (2015). Covalently intercalated graphene oxide for oil–water separation. Carbon, 82, 264–272. https://doi.org/10.1016/j.carbon.2014.10.070
- Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
- McCoy, T. M., Pottage, M. J., & Tabor, R. F. (2014). Graphene Oxide-Stabilized Oil-inWater Emulsions: pH-Controlled Dispersion and Flocculation. The Journal of Physical Chemistry C, 118(8), 4529–4535. https://doi.org/10.1021/jp500072a
- Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-jpt
- Neto, A., & Fileti, E. E. (2018). Elucidating the amphiphilic character of graphene oxide. Physical Chemistry Chemical Physics, 20(14), 9507–9515. https://doi.org/10.1039/c8cp00797g
- Neuberger, N., Adidharma, H., & Fan, M. (2018). Graphene: A review of applications in the petroleum industry. Journal of Petroleum Science and Engineering, 167, 152–159. https://doi.org/10.1016/j.petrol.2018.04.016
- Nurrohman, N., Almisbahi, H., Albeirutty, M., Bamaga, O., Almatrafi, E., Tocci, E. (2023). Graphene coating reduces the heat transfer performance of water vapor condensation on copper surfaces: A molecular simulation study. Alexandria Engineering Journal, 82, 101-125. https://doi.org/10.1016/j.aej.2023.09.076
- Qiu, L., Zhang, X., Yang, W., Wang, Y., Simon, G. P., & Li, D. (2011). Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications, 47(20), 5810-5812. https://doi.org/10.1039/c1cc10720h
- Radnia, H., Nazar, A., & Rashidi, A. (2017). Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 80, 34–45. https://doi.org/10.1016/j.jtice.2017.07.033
- Si, Y., & Samulski, E. T. (2008). Synthesis of Water Soluble Graphene. Nano Letters, 8(6), 1679–1682. https://doi.org/10.1021/nl080604h
- Singhbabu, Y. N., Sivakumar, B., Singh, J. K., Bapari, H., Pramanick, A. K., & Sahu, R. K. (2015). Efficient anti-corrosive coating of coldrolled steel in a seawater environment using an oil-based graphene oxide ink. Nanoscale, 7(17), 8035–8047. https://doi.org/10.1039/c5nr01453k
- Terrones, M., Botello-Méndez, A. R., CamposDelgado, J., López–Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., Elías, A. L., Muñoz‐Sandoval, E., Cano-Márquez, A. G., Charlier, J. C., & Terrones, H. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 5(4), 351–372. https://doi.org/10.1016/j.nantod.2010.06.010
- Vanegas, C. L., Buendia, H., & Carrillo, L. F. (2016). Evaluación y selección de un inhibidor multiscale para prevenir la formación de incrustaciones inorgánicas en un campo petrolero colombiano. Fuentes, el reventón energético, 14(2), 111-120. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/6075
- Wang, Y-L., Ma, L., Bai, B-J., Jiang, G., Jin, J-F., & Wang, Z-B. (2013). Wettability Alteration of Sandstone by Chemical Treatments. Journal of Chemistry, 1–8. https://doi.org/10.1155/2013/845031
- Wang, D., Sun, S., Cui, K., Li, H., Gong, Y., Hou, J., & Zhang, Z. (2019). Wettability Alteration in Low-Permeability Sandstone Reservoirs by “SiO2–Rhamnolipid” Nanofluid. Energy & Fuels, 33(12), 12170–12181. https://doi.org/10.1021/acs.energyfuels.9b01930
- Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., & Yao, J. (2008). Facile Synthesis and Characterization of Graphene Nanosheets. The Journal of Physical Chemistry C, 112(22), 8192–8195. https://doi.org/10.1021/jp710931h
- Wei, N., Lv, C., & Xu, Z. (2014). Wetting of Graphene Oxide: A Molecular Dynamics Study. Langmuir, 30(12), 3572–3578. https://doi.org/10.1021/la500513x
- Xu, L., Ma, T-B., Hu, Y-Z., & Wang, H. (2011). Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology, 22(28), 285708. https://doi.org/10.1088/0957-4484/22/28/285708
- Xuan, Y., Jiang, G., & Li, Y. (2014). Nanographite Oxide as Ultrastrong Fluid-Loss-Control Additive in Water-Based Drilling Fluids. Journal of Dispersion Science and Technology, 35(10), 1386–1392. https://doi.org/10.1080/01932691.2013.858350
- Yoon, K. Y., An, S. J., Chen, Y., Lee, J. H., Bryant, S. L., Ruoff, R. S., Huh, C., & Johnston, K. P. (2013). Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. Journal of Colloid and Interface Science, 403, 1–6. https://doi.org/10.1016/j.jcis.2013.03.012
- You, Y., Sahajwalla, V., Yoshimura, M., & Joshi, R. (2016). Graphene and graphene oxide for desalination. Nanoscale, 8(1), 117–119. https://doi.org/10.1039/c5nr06154g
- Zhang, L., Shi, T., Tan, D., Zhou, H., & Zhou, X. (2014). Pickering Emulsion Polymerization of Styrene Stabilized by the Mixed Particles of Graphene Oxide and NaCl. Fullerenes Nanotubes and Carbon Nanostructures, 22(8), 726–737. https://doi.org/10.1080/1536383x.2012.731581
- Zhou, K., & Xu, Z. (2020). Ion Permeability and Selectivity in Composite Nanochannels: Engineering through the End Effects. Journal of Physical Chemistry C, 124(8), 4890–4898. https://doi.org/10.1021/acs.jpcc.9b11750
- Zhou, L., Zhou, L., Wei, Z., Ge, X., Zhou, J., Jiang, H., Li, F., Shen, J. (2014). Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 135, 7-16. https://doi.org/10.1016/j.jphotobiol.2014.04.010