Vol. 10 No. 2 (2012): Fuentes, el reventón energético
Articles

Reacción y difusión: dos factores claves en la técnica de combustión in situ

Andres Jair Yatte Garzon
Universidad Industrial de Santander.
Bio
Maria Carolina Ruiz Cañas
Universidad Industrial de Santander.
Bio
Samuel Fernando Muñoz Navarro
Universidad Industrial de Santander.
Bio

Published 2012-11-28

Keywords

  • Combustion,
  • diffusion,
  • dispersion,
  • kinetics,
  • thermodynamic

How to Cite

Yatte Garzon, A. J., Ruiz Cañas, M. C., & Muñoz Navarro, S. F. (2012). Reacción y difusión: dos factores claves en la técnica de combustión in situ. Fuentes, El reventón energético, 10(2). Retrieved from https://revistas.uis.edu.co/index.php/revistafuentes/article/view/3329

Abstract

Currently, around the world, 64% of the reserves are composed of heavy oil, which is not easily extracted by conventional methods. In order to exploit these deposits, some techniques have been developed for enhanced oil recovery, all of them with different mechanisms of displacement. Fluids drive miscible and immiscible, viscosity reduction by temperature rise, reduction of surface tension by chemical methods, etc. Among these techniques

it may be found the in-situ combustion (ISC), which is known as a thermal method since it is based on energy

transfer in the form of heat in order to decrease the viscosity and density of the heavy oil to be extracted from the reservoir.

 

ISC is a complex technique because it has several physical and chemical mechanisms of displacement. This Technique  occurs  in  fve  steps:  dispersion  of  air  at  the  surface,  adsorption  of  oxygen  in  the media,  chemical reactions,  desorption  of  the  combustion  gases  and fnally,  diffusion  of  these  gases  to  the  surface. The  overall process speed is controlled by the step that occurs more slowly, which is usually the chemical kinetics or the dispersion.

 

In this paper it is studied the two principal aspects separately, beginning with a review of the reactions that occurin this process. Also it is presented the most important chemical transformations of each temperature regime (low, intermediate and high) as well as the kinetics and thermodynamics of the reactions, which introduces the subject of phase equilibrium for the technique. On the other hand, it is made a review of the different types of dispersion

that exist in the reservoir and the factors which affect this process, considering that it is mass transfer phenomena taking in a porous medium, thus generating the necessity for new correlations that include correction factors with the main goal of representing the displacement phenomena by mathematical expressions.

Downloads

Download data is not yet available.

References

1. SARATHI, S. Partha. “In Situ Combustion Handbook, Principles and Practices”. BDM petroleum technologies. Oklahoma. January, 1999.

2. YATTE Fabián, MUÑOZ Samuel. “Una nueva Mirada a la combustión in-situ: tratando de romper un viejo paradigma”. Revista Fuentes: el Reventón Energético. Vol. 9 N° 1 de 2011 – Ene/Jun – pp 41/56.

3. PARIS DE FERRER, Magdalena. “Inyección de Agua y Gas en Yacimientos Petrolíferos. “ Segunda edición. Capítulo 9.

4. CADY, G. V., HOFFMAN, S.J., SCARBOROUGH, R. M., “Silverdale Combination Thermal Drive Project” General Crude Oil Co. 1980.

5. S. BOUSAID. Texas A&M U. College Station, Tex., H.J. RAMEY, JR. Standfor U. Stanford, Calif. “Oxidation of Crude Oil in Porous Media”. Transactions Volume 243. 1958

6. J. STIPANOV. A Kinetic Model of the Hydrocarbon Fraction Reactions During the Low-and High- Temperature Oxidation of Athabasca Bitumen. University of Calgary. 1999.

7. FASSAHI, M. R., BRIGHAM, W. E., RAMEY, H. J. Jr., “The Reactions Kinetics of In-Situ Combustion”. The 55th annual fall technical conference and exhibition of society of Petroleum Engineering of AIME. Dallas, Texas. SPE9454, 1980.

8. J. D. M. BELGRAVE, R. G. MOORE, M. G. URSENBACH, D. W. BENNION. “A Comprehensive Approach to In- Situ Combustion Modeling” The University of Calgary, Chemical and Petroleum Engineering. April 1993.

9. M. R. FASSIHI, W. E. BRIGHAM, H. J. RAMEY JR. “Reaction Kinetics of In Situ Combustion: Part 1- Observations”. SPE, Stanford U.

10. D. D. MAMORA, H. J. RAMEY JR, W. E. BRIGHAM, L. M. CASTANIER. “Kinetics of In Situ Combustion”. 1993

11. J. G. BURGER, B.C. SAHUQUET. “Chemical Aspects of In-Situ Combustion – Heat of Combustion and Kinetics”. Institut Francais du Pétrole Rueil-MalMaison, France. October, 1972.

12. MEYERS, K. O., M. R. FASSIHI and P. F. BASILE, “Low Temperature Oxidations of Viscous Crude Oils” paper SPE 15648, presented at the 61st Annual Technical Meeting of SPE, October 5 – 8, 1986.

13. ADEGBESAN, K. O., J. K. DONNELY, R. G. MOORE and D.W. BENNION, “Low Temperature Oxidation Kinetic Parameters for In Situ Combustion Numerical Simulation”, SPE Reservoir Engineering, (November 1987), 573 – 582.

14. SEVERIN, D. , O. GLINZER, H. KILLESREITER and H. J. NEWMAN, “The Quiet Oxidation of a Crude Oil and the Effect on its Viscosity”, Erdol und Kohl-Erdgas, 36 (3), march 1983, 127-130.

15. BABU, D. R. AND D. E. Cormack, “Effect of Low Temperature Oxidation on the Viscosity of Athabasca Bitumen”, Can. J. Chem. Eng. , 62, Aug. 1984, 562 – 564.

16. D. GUTIERREZ, R. G. MOORE, S. A. MEHTA, M. G. URSENBACH, F. SKOREYKO. “The Challenge of Predicting Field Performance of Air Injection Projects Based on Laboratory and Numerical Modelling”. Computer Modelling Group Ltd. University of Calgary.

17. R. G. MOORE “New Strategies for In Situ Combustion”. University of Calgary. October 1993.

18. BURGER, J. SORIEAU, P. “Thermal Methods of oil Recovery”. Paris, Editions Technip 1985.

19. W. R. SHU, K. J. HARTMAN. “Thermal Visbreaking of Heavy Oil During Steam Recovery Processes”. Soc. Pet. Eng. 1986.

20. VENKATESAN V. N., SHU W. R. “Alteration in Heavy Oil Characteristics During Thermal Recovery”. Mobil Research and Development Corp. Dallas, Texas.

21. JOYA Diana. “Reacciones químicas en procesos de combustión in situ”. Grupo de recobro mejorado. Universidad Industrial de Santander. Bucaramanga. Diciembre 2010.

22. LEVENSPIEL O. “Chemical Reaction Engineering” Jhon Wiley and Sons, Inc., New York, USA. Second Edition.

23. SMITH, J.M. VAN NESS, H.C. ABBOTT, M. M. “Introducción a la termodinámica en ingeniería química”. p. 200.

24. PAULING L.: The Chemical bond, Cornell U. Press, Ithaca, N.Y. (1967) 59-63, 118-124.

25. J. M. COULSON, J. F. RICHARDSON, D. G. PEACOCK. “Chemical Engineering” Volume Three, Second Edition. Pergamon Press, Oxford, England.

26. S. A. ABU-KHAMSIN, W.E. BRIGHAM, H. J. RAMEY JR. “Reaction Kinetics of Fuel Formation for In-Situ Combustion”. Soc. Pet. Eng. 1988.

27. HAYASHITANI, M. et al.: “Thermal Cracking Models for Athabasca Oil Sands Oil” paper SPE 7549 presented at the 1978 SPE Annual Technical Conference and Exhibition, Houston, Oct. 1-3.

28. M. R. ISLAM, NOVA/Husky Research; A. CHAKMA, U. of Calgary; S.M. FAROUQ ALI, U. of Alberta. “State-of-the-Art of In-Situ Combustion Modeling and Operations. Soc. Pet. Eng., 1989.

29. M. R. KRISTENSEN, SPE, Technical U. of Denmark; M. G. GERRITSEN, SPE, Stanford U; P.G. THOMSEN, M. L. MICHELSEN, E. H. STENBY, SPE, Technical U. of Denmark. “Impact of Phase Behavior Modeling on In-Situ Combustion Process Performance”.

30. PRIYANKA JAIN, ERLING H. STENBY, NICOLAS VON SOLMS, “Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics”. Technical Uinversity of Denmark. 2010.

31. NIEMANN E. H., GREENKORN R. A., ECKERT R. E. “Dispersion During Flow in Nonuniform, Heterogeneus Porous Media”. Purdue University. Lafayette, Indiana.

32. H. A. DEANS. “A Mathematical Model For Dispersion in The Direction of Flow in Porous Media”.

33. ABRAHAM K. JOHN, SPE, LARRY W. LAKE, SPE, STEVEN L. BRYANT, SPE, JAMES W. JENNINGS, SPE. “Investigation of Field Scale Dispersion” The University of Texas Austin. 2008.

34. CRISTIE J. GEANKOPLIS. “Transport process and Unit Operations”. University of Minnesota. Third Edtion. Prentice Hall International.

35. YUNUS A. CENGEL. “Transferencia de Masa y Calor”. Capítulo 14: Transferencia de Masa.

36. J. F. IZQUIERDO, F. CUNILL, J. TEJERO, M IBORRA, C. FITÉ. “Cinética de las reacciones químicas”. Universitat de Barcelona. Ediciones de la universitat de Barcelona. 2004.

37. RAMAN K. JHA, STEVEN L. BRYANT, LARRY W. LAKE, “Effect of Diffusion on Dispersion”. The University of Texas Austin.

38. R. E. TREYBAL. ”Operaciones de Transferencia de Masa”. Segunda edición. McGraw-Hill.

39. R. BYRON BIRD. “Fenómenos de transporte”. Segunda edición. México: Limusa Waley, 2006.

40. BOSCHAN ALEJANDRO. “Estudio del transporte y de la dispersión en los medios fracturados”. Tesis doctoral de la Universidad Pierre y Marie Curie. 5 septiembre 2007.

41. BEAR, J AND BACHMAT, Y., “Transport Phenomena in Porous Media – Basic Equations”, presented at the NATO advanced Study Institute on Mechanics of Fluids in Porous Media, Newark, Delaware, 1982.

42. PERKINS, T.K. AND JOHNSTON, O.C. ,”A review of Diffusion and Dispersion in Porous Media” Soc. Pet. Eng. J., March, 1963, 70 – 84.

43. SAFFMAN, P.G.: “Dispersion in Flow Through a Network of Capillaries”, Chem. Eng. Sci. 1959, Vol. 11, 125.

44. GRANE, F. E., GARDNER, G. H. F.: “Measurements of Transverse Dispersion in Granular Media”, Jour. Chem. Eng. Data, 1961, Vol. 6, 283.

45. BLACKWELL, R. J.: “Laboratory Studies of Microscopic Dispersion Phenomena”, Soc. Pet. Eng. Jour, March, 1962, 1.

46. VENKATESAN, V. N., and SHU, 2. R. “Alteratuibs of heavy oil characteristics during termal recovery”Annu. Meeting of Petroleum Soc. CIM, Petroleum Soc. CIM Paper No.84 -35 – 108, June 1984.

47. AKSTINAT, M. H. “Gas Evolution and Change of Oil Composition During Steam Flooding of Oil Reservoirs” J. Petroleum Geol., Vol. 5, p. 363 – 388, 1983.

48. MONIN, j. c. and AUDIBERT, A., “Alterations of Heavy Crudes Under High Pressure Steam Conditions” Amer. chem. Soc., Div. Petroleum Chem., Preprints, Vol. 29, No.4, p. 1223-1231, 1984.

49. HYNE, J. B. et al. “Aquathermolysis of Heavy Oil” Second internation. conf., The Future of Heavy Crude and Tar Sands, McGraw Hill, New York, p. 404 – 411, 1984.

50. CONNOR, J. E., Jr, ROTHROCK, J. J., BIRJHIMER, E. R., and LEUM, L. N. “Fluid Cracking Catalyst Contamination. Some Fundamental Aspects of Metal Contamination,” Industri. Eng. Chem., Vol. 49, p 276-282, 1957.

51. Z. ZHOY, W. D. GUNTER, B. KADATZ, S. CAMERON. “Effect of Clay Swelling on Reservoir Quality” Alberta Research Council. 1993.

52. CIVAN, F., KNAPP, R. M., ”Effect of Clay Swelling and Fines Migration on Formation Permeability” SPE Production Operations Symposium, 8 -10 March 1987, Oklahoma City Oklahoma.

53. GRIM, R. E., “Clay Mineralogy”, McGraw Hill, New York, 1986.

54. SAHUQUET, B., CORRE, B. “Injection de vapeur en milieu carbonaté fissuré. Pilote de Lacq Supérieur”. Second europ. Symp., Enhanced Oil Recovery, Editions Technip, Paris, 1982.