Revista Integración, temas de matemáticas.
Vol. 42 No. 1 (2024): Revista Integración, temas de matemáticas
Accepted article

Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces

Héctor Camilo Chaparro
Universidad de Cartagena
René Erlin Castillo
Universidad Nacional de Colombia

Published 2024-02-06

Keywords

  • Hilbert transform,
  • distribution function,
  • decreasing rearregement,
  • Hardy's inequality

How to Cite

Chaparro, H. C., & Castillo, R. E. (2024). Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces. Revista Integración, Temas De matemáticas, 42(1), 1–21. https://doi.org/10.18273/revint.v42n1-2024001

Abstract

In this self-contained review, the aspects about the applications of decreasing rearrangement techniques to the analysis of pointwise estimates for the Hilbert transform are analyzed. We make a consistent revision of these techniques in the proof of the $L_{p}$-boundedness of the Hilbert transform. This is a celebrated theorem due to M. Riesz.

Downloads

Download data is not yet available.

References

  1. Arcos E.A. and Castillo R.E., “The Hilbert transform”, Surv. Math. Appl. 16 (2021), 149-192.
  2. Calderon A.P., “Singular integrals”, Bull. Am. Math. Soc., 72 (1966), 427-465. doi: 10.1090/S0002-9904-1966-11492-1
  3. Calderon A.P. and Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85-139. doi: 10.1007/BF02392130
  4. Castillo R.E., Fourier meets Hilbert and Riesz. An introduction to the corresponding transforms, De Gruyter, vol. 87, Berlin, 2022. doi: 10.1515/9783110784091
  5. Castillo R.E. and Chaparro H.C., Classical and Multidimensional Lorentz Spaces, De Gruyter, 2021. doi: 10.1515/9783110750355
  6. Castillo R.E. and Rafeiro H., An Introductory Course in Lebesgue Spaces, Springer, Cham, 2016. doi: 10.1007/978-3-319-30034-4
  7. Coifman R.R., De Guzmán M., “Singular integrals and multipliers on homogeneous spaces”, Rev. un. Mat. Argentina, 25 (1970),137-143.
  8. Coifman R. and Weiss G., Analyse harmonique non-commutative sur certains espaces homogénes, Springer-Verlag, vol. 242, Berlin-New York, 1971, v+160 pp. doi: 10.1007/BFb0058946
  9. Duoandikoetxea J., Fourier analysis, American Mathematical Society, Providence, RI, vol. 29, 2001, xviii+222 pp. 2.
  10. Ephremidze L., “The Stein-Weiss theorem for the ergodic Hilbert transform”, Math 165 (2004), No. 1, 61-71. doi: 10.4064/sm165-1-5
  11. Fefferman C., “Inequalities for strongly singular integral operators”, Acta Math. 24 (1970), 9-36.
  12. Fischer V., Ruzhansky M., Quantization on nilpotent Lie groups, Progress in Mathematics, vol. 314, Birkhauser, 2016, xiii+557pp. doi: 10.1007/978-3-319-29558-9
  13. Garnett J.B., Bounded analytic functions, Academic Press, vol. 96, New York, 1981.
  14. Grafakos L., Classical Fourier Analysis, Springer, 3rd ed., vol. 249, New York, 2014. doi: 10.1007/978-1-4939-1194-3
  15. Mihlin S.G., “Singular integral equations”. Uspehi Mat. Nauk, 3 (1948), No. 25, 29-112.
  16. O’neil R. and Weiss G., “The Hilbert Transform and rearrangement of functions”, Studia Math. 23 (1963), 189-198.
  17. Ruzhansky M., Turunen V., Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhauser, Basel, 2010.
  18. Sagher Y. and Xiang N., "Complex methods in the calculation of some distribution functions," in Convergence in Ergodic Theory and Probability, de Gruyter (1996), 381-387.
  19. Stein E. and Weiss G., “An extension of a theorem of Marcinkievicz and some of its applications”, J. Math. Mech., 8 (1959), 263-284