Research and Innovation Articles
Published 2024-02-06
Keywords
- Hilbert transform,
- distribution function,
- decreasing rearregement,
- Hardy's inequality
How to Cite
Chaparro, H. C., & Castillo, R. E. (2024). Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces. Revista Integración, Temas De matemáticas, 42(1), 1–21. https://doi.org/10.18273/revint.v42n1-2024001
Copyright (c) 2024 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this self-contained review, the aspects about the applications of decreasing rearrangement techniques to the analysis of pointwise estimates for the Hilbert transform are analyzed. We make a consistent revision of these techniques in the proof of the $L_{p}$-boundedness of the Hilbert transform. This is a celebrated theorem due to M. Riesz.
Downloads
Download data is not yet available.
References
- Arcos E.A. and Castillo R.E., “The Hilbert transform”, Surv. Math. Appl., 16 (2021), 149-192.
- Calderon A.P., “Singular integrals”, Bull. Am. Math. Soc., 72 (1966), 427-465. doi: 10.1090/S0002-9904-1966-11492-1
- Calderon A.P. and Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85-139. doi: 10.1007/BF02392130
- Castillo R.E., Fourier meets Hilbert and Riesz. An introduction to the corresponding transforms, De Gruyter, vol. 87, Berlin, 2022. doi: 10.1515/9783110784091
- Castillo R.E. and Chaparro H.C., Classical and Multidimensional Lorentz Spaces, De Gruyter, 2021. doi: 10.1515/9783110750355
- Castillo R.E. and Rafeiro H., An Introductory Course in Lebesgue Spaces, Springer, Cham, 2016. doi: 10.1007/978-3-319-30034-4
- Coifman R.R. and De Guzmán M., “Singular integrals and multipliers on homogeneous spaces”, Rev. un. Mat. Argentina, 25 (1970), No. 1-2, 37-143.
- Coifman R. and Weiss G., Analyse harmonique non-commutative sur certains espaces homogénes, Springer-Verlag, vol. 242, Berlin-New York, 1971. doi: 10.1007/BFb0058946
- Duoandikoetxea J., “Fourier Series and Integrals,” in Fourier analysis, American Mathematical Society, 2001, vol. 29, xviii+222 pp. 2. doi: 10.1090/gsm/029/01
- Ephremidze L., “The Stein-Weiss theorem for the ergodic Hilbert transform”, Studia Math, 165 (2004), No. 1, 61-71. doi: 10.4064/sm165-1-5
- Fefferman C., “Inequalities for strongly singular integral operators”, Acta Math, 24 (1970), 9-36. doi: 10.1007/BF02394567
- Fischer V. and Ruzhansky M., Quantization on nilpotent Lie groups, Birkhäuser Cham, vol. 314, Cham, 2016. doi: 10.1007/978-3-319-29558-9
- Garnett J.B., Bounded analytic functions, Academic Press, vol. 96, New York, 1981.
- Grafakos L., Classical Fourier Analysis, Springer, 3rd ed., vol. 249, New York, 2014. doi: 10.1007/978-1-4939-1194-3
- Mihlin S.G., “Singular integral equations”, Uspehi Mat. Nauk, 3 (1948), No. 25, 29-112.
- O’neil R. and Weiss G., “The Hilbert Transform and rearrangement of functions”, Studia Math., 23 (1963), 189-198.
- Ruzhansky M. and Turunen V., Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhauser, Basel, 2010.
- Sagher Y. and Xiang N., “Complex methods in the calculation of some distribution functions”, in Convergence in Ergodic Theory and Probability (Vitaly Bergelson, Peter March and Joseph Rosenblatt), Gruyter, 1996, 381-387. doi: 10.1515/9783110889383
- Stein E. and Weiss G., “An extension of a theorem of Marcinkievicz and some of its applications”, J. Math. Mech., 8 (1959), 263-284.