Artículos científicos
Publicado 2024-06-23
Palabras clave
- Absoluto,
- función θ-continua,
- función perfecta,
- función irreducible,
- hiperespacio
Cómo citar
Zaragoza, A. (2024). Hiperespacios de absolutos de un espacio X. Revista Integración, Temas De matemáticas, 42(2), 1–10. https://doi.org/10.18273/revint.v42n2-2024001
Derechos de autor 2024 Revista Integración, temas de matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
Dado un espacio Hausdorff X se le puede asociar un par (EX, kX), donde EX es un espacio extremadamente disconexo y kX : EX → X es una función θ-continua perfecta e irreducible. Al espacio EX se le conoce como el absoluto de X. En este trabajo vamos a estudiar cómo se comportan algunos hiperespacios del absoluto de un espacio X con la topología de Vietoris.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
- Beshimov R.B., “On some cardinal invariants of hyperspaces”, Mathematychni Studii, 24 (2005), No. 2, 197–202.
- Engelking R., General Topology, Heldermann Verlag, Sigma Series in Pure Mathematics, vol. 6, 1989.
- Ginsburg J., “On the Stone-Čech Compactification of the Space of Closed Sets”, Trans. Amer. Math. Soc., 215 (1976), 301–311. doi: 10.2307/1999729.
- Hernández-Gutiérrez R. and Tamariz-Mascarúa A., “Disconnedctedness properties of hyperspaces”, Comment. Math. Univ. Carolin., 52 (2011), No. 4, 569–591.
- Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc., 71 (1951), No. 1, 152–182. doi:10.1090/S0002-9947-1951-0042109-4.
- Porter J. and Woods R., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlang, New York, 1988. doi: 10.1007/978-1-4612-3712-9
- Velicko N.V., “The space of closed subsets”, Sibirsk. Mat. Z., 16 (1975), No 3, 627–629. doi: 10.1007/BF01127055.