Revista Integración, temas de matemáticas.
Vol. 42 No. 2 (2024): Revista Integración, temas de matemáticas
Accepted articles: Preprint

Hyperspaces of absolutes of a space X

Alfredo Zaragoza
Universidad Michoacana de San Nicolás de Hidalgo

Published 2024-06-23

Keywords

  • Hyperspace,
  • perfect function,
  • θ-continuous function,
  • irreducible function

How to Cite

Zaragoza, A. (2024). Hyperspaces of absolutes of a space X. Revista Integración, Temas De matemáticas, 42(2), 1–10. https://doi.org/10.18273/revint.v42n2-2024001

Abstract

Given a Hausdorff space X, a pair (EX, kX) can be associated with it, where EX is an extremely disconnected space, and kX : EX → X is a perfect, irreducible and θ-continuous function. The space EX is known as the absolute of X. In this work, we are going to study how some hyperspaces of the absolute of a space X behave with the Vietoris topology.

Downloads

Download data is not yet available.

References

  1. Beshimov R.B., “On some cardinal invariants of hyperspaces”, Mathematychni Studii, 24 (2005), No. 2, 197–202.
  2. Engelking R., General Topology, Heldermann Verlag, Sigma Series in Pure Mathematics, vol. 6, 1989.
  3. Ginsburg J., “On the Stone-Čech Compactification of the Space of Closed Sets”, Trans. Amer. Math. Soc., 215 (1976), 301–311. doi: 10.2307/1999729.
  4. Hernández-Gutiérrez R. and Tamariz-Mascarúa A., “Disconnedctedness properties of hyperspaces”, Comment. Math. Univ. Carolin., 52 (2011), No. 4, 569–591.
  5. Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc., 71 (1951), No. 1, 152–182. doi:10.1090/S0002-9947-1951-0042109-4.
  6. Porter J. and Woods R., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlang, New York, 1988. doi: 10.1007/978-1-4612-3712-9
  7. Velicko N.V., “The space of closed subsets”, Sibirsk. Mat. Z., 16 (1975), No 3, 627–629. doi: 10.1007/BF01127055.