Revista Integración, temas de matemáticas.
Vol. 42 Núm. 2 (2024): Revista Integración, temas de matemáticas
Artículos científicos

Análisis de estabilidad y bifurcación en un modelo presa depredador que involucra efecto Allee aditivo

Jocirei Dias-Ferreira
Universidade Federal de Mato Grosso
Wilmer L. Molina
Universidad del Cauca
Jaime Tobar
Universidad del Cauca

Publicado 2024-08-23

Palabras clave

  • Sistema presa-depredador,
  • efecto Allee,
  • positividad,
  • disipación,
  • acotación,
  • permanencia,
  • estabilidad,
  • bifurcación
  • ...Más
    Menos

Cómo citar

Dias Ferreira, J., Molina Yepez, W. L., & Tobar Muñoz, J. (2024). Análisis de estabilidad y bifurcación en un modelo presa depredador que involucra efecto Allee aditivo. Revista Integración, Temas De matemáticas, 42(2), 23–53. https://doi.org/10.18273/revint.v42n2-2024003

Resumen

En este artículo estudiamos bifurcación de Hopf de codimensión 1 para un sistema de ecuaciones diferenciales ordinarias bidimensional autónomo no lineal, modelando una interacción depredador-presa con respuesta funcional Holling tipo II y efecto Allee aditivo en la ecuación de la presa. Se analiza positividad, disipación, acotación y permanencia de las soluciones.
Además, se realizan análisis de estabilidad y bifurcación para mostrar la existencia de órbitas periódicas debido a la ocurrencia de bifurcación de Hopf de codimensión 1, involucrando efecto Allee débil así como efecto Allee fuerte. En el caso de un fuerte efecto Allee, a través de simulaciones realizadas en MAPLE 13, conjeturamos que este modelo puede admitir una bifurcación heteroclínica. Presentamos algunas simulaciones que permiten verificar los resultados analíticos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abbas S., Banerjee M. and Hungerbühler N., “Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model”, J. Math. Anal. Appl., 367 (2010), No. 1, 249-59. doi: 10.1016/j.jmaa.2010.01.024
  2. Abbas S., Sen M. and Banerjee M.,“Almost periodic solution of a non-autonomous model of phytoplankton allelopathy”, Nonlinear Dyn., 67 (2012), 203-14. doi: 10.1007/s11071-011-9972-y
  3. Aguirre P., González-Olivares E. and Sáez E., “Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect”, SIAM J. Appl. Math. 69 (2009), No. 5, 1244-1269. doi: 10.1137/070705210
  4. Aguirre P., González-Olivares E. and Sáez E., “Two limit cycles in a Leslie-Gower predatorprey model with additive Allee effect”, Nonlinear Anal. Real World Appl., 10 (2009), No. 3, 1401-1416. doi: 10.1016/j.nonrwa.2008.01.022
  5. Allee W.C., “Animal aggregations” Quart. Rev. Biol., The University of Chicago Press, vol. 2 (1927), No. 3, 367-398. doi: 10.1086/394281
  6. Allee W.C., Animal aggregations: A study in General Sociology, The University of Chicago Press, Chicago, 1931. doi: 10.5962/bhl.title.7313
  7. Andronov A.A., Leontovich E.A., Gordon I.I. and Maier A.G., Theory of Bifurcations of Dynamic Systems on a Plane, Halsted Press/a devision of John Wiley & Sons, New York, 1973.
  8. Aziz-Alaqui M.A. and Okiye M.D., “Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes”, Appl. Math. Lett., 16 (2003), No. 7, 1069-1075. doi: 10.1016/S0893-9659(03)90096-6
  9. Bazykin A., Nonlinear dynamics of interacting populations, World Sci., No. 11, 1998. doi: 10.1142/2284
  10. Boukal D. and Berec L., “Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate enconunters”, J. Theoret. Biol., 218 (2002), No. 3, 375-394. doi: 10.1006/jtbi.2002.3084
  11. Boukal D.S., Sabelis M.W. and Berec L., “How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses”, Theor. Popul. Biol., 72 (2007), 136-147. doi: 10.1016/j.tpb.2006.12.003
  12. Browder F.E., “Another generalization of the Schauder fixed point theorem”, Duke Math. J., 32 (1965), No. 3, 399-406. doi: 10.1215/S0012-7094-65-03239-4
  13. Cai Y., Wang W. and Wang J., “Dynamics of a diffusive predator-prey model with additive Allee effect.”, Int. J. Biomath., 5 (2012), No. 2, 1250023-1250023. doi: 10.1142/S1793524511001659
  14. Courchamp F., Berec L. and Gascoigne J., Allee effects in ecology and conservation, Oxford University Press Inc, New York, 2008.
  15. Dennis B., “Allee effect: population growth, critical density, and chance of extinction”, Natur. Resource Model, 3 (1989), 481-538. doi: 10.1111/j.1939-7445.1989.tb00119.x
  16. Dhooge A., Govaerts W. and Kuznetsov Y., “MatCont: a MATLAB package for numerical bifurcation analysis of ODEs”, ACM Trans. Math. Software, 29 (2003), No. 2, 141-164. doi: 10.1145/779359.779362
  17. Dias F.S., Mello L.F. and Zhang J.G., “Nonlinear analysis in a Lorenz-like system”, Nonlinear Anal. Real World Appl., 11 (2010), No. 5, 3491-3500. doi: 10.1016/j.nonrwa.2009.12.010
  18. Du Y. and Shi J., “Allee effect and bistability in a spatially heterogeneous predator-prey model”, Trans. Amer. Math. Soc. 359 (2007), No. 9, 4557-4593. doi: 10.1090/S0002-9947-07-04262-6
  19. Ferreira J.D., González A.P. and Molina W., “Lyapunov coefficients for degenerate Hopf bifurcations and an application in a model of competing populations”, J. Math. Anal. Appl., 455 (2017), No. 1, 1-51. doi: 10.1016/j.jmaa.2017.05.040
  20. Gascoigne J.C. and Lipcius R.N., “Allee effects driven by predation” J. Appl. Ecol., 41 (2004), No. 5, 801-810. doi: 10.1111/j.0021-8901.2004.00944.x
  21. Haiyin L. and Takeuchi Y., “Dynamics of the density dependent predator-prey system with Bedinton-DeAngelis functional response”, J. Math. Anal. Appl., 374 (2011), No. 2, 644-54. doi: 10.1016/j.jmaa.2010.08.029
  22. Hassard B.D., Kazarinoff N.D. and Wan Y.H., Theory and Application of Hopf Bifurcation, Cambridge University Press, vol. 41, Cambridge-New York, 1981.
  23. Kent A., Doncaster C.P. and Sluckin T., “Consequences for predators of rescue and Allee effects on prey”, Ecol. Model., 162 (2003), 233-245. doi: 10.1016/S0304-3800(02)00343-5
  24. Kirlinger G., “Permanence of some ecological systems with several predator and one prey species”, J. Math. Biol., 26 (1988), No. 2, 217-232. doi: 10.1007/BF00277734
  25. Kuussaari M., Saccheri I., Camara M. and Hanski I., “Allee effect and population dynamics in the Glanville fritillary butterfly”, Oikos, 82 (1998), No. 2, 384-392. doi: 10.2307/3546980
  26. Kuznetsov Y.A., Elements of applied Bifurcation theory, Springer-Verlag, 2nd ed., vol. 112, New York, 1998.
  27. Marsden J.E. and McCracken M., The Hopf bifurcation and its applications, SpringerVerlag, vol. 19, New York, 1976.
  28. Stephens P.A. and Sutherland W.J., “Consequences of the Allee effect for behaviour, ecology and conservation”, Trends in Ecology and Evolution, 14 (1999), No. 10, 401-405. doi: 10.1016/S0169-5347(99)01684-5
  29. Stephens P.A., Sutherland W.J. and Freckleton R.P., “What is the Allee effect?”, Oikos, 87 (1999), No. 1, 185-190. doi: 10.2307/3547011
  30. Verhulst P.F., “Notice sur la loi que la population suit dans son accroissement”, Corresp. Math. et Phys., 10 (1838), 113-121.
  31. Wang J., Shi J. and Wei J., “Predator-prey system with strong Allee effect in prey”, J. Math. Biol., 62 (2011), No. 3, 291-331. doi: 10.1007/s00285-010-0332-1
  32. Wang M.H. and Kot M., “Speeds of invasion in a model with strong or weak Allee effects”, Math. Biosci., 171 (2001), No. 1, 83-97. doi: 10.1016/S0025-5564(01)00048-7
  33. Wang M.H., Kot M. and Neubert M.G., “Integrodifference equations, Allee effects, and invasions”, J. Math. Biol., 44 (2002), No. 2, 150-168. doi: 10.1007/s002850100116
  34. Wertheim B., Marchais J., Vet L.E.M. and Dicke M., “Allee effect in larval resource explotation in Drosophila: an interaction among density of adults, larvae, and micro-organisms”, Ecological Entomological, 27 (2002), No. 5, 608-617. doi: 10.1046/j.1365-2311.2002.00449.x
  35. Yi F., Wei J. and Shi J., “Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system”, J. Differential Equations 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024