Revista Integración, temas de matemáticas.
Vol. 28 Núm. 1 (2010): Revista Integración, temas de matemáticas
Artículos científicos

Análisis de Fourier sobre ZN y conjuntos Bh

Jhon Jairo Bravo G.
Universidad del Cauca
Carlos Alberto Trujillo S.
Universidad del Cauca

Publicado 2010-06-09

Palabras clave

  • Conjuntos de Sidon,
  • conjuntos Bh

Cómo citar

Bravo G., J. J., & Trujillo S., C. A. (2010). Análisis de Fourier sobre ZN y conjuntos Bh. Revista Integración, Temas De matemáticas, 28(1), 67–78. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2060

Resumen

Un conjunto A de enteros positivos se llama un conjunto Bh, sitodas las sumas de h elementos de A son diferentes. En este artículo usamospropiedades básicas del análisis de Fourier sobre ZN y seguimos el estilo deBen Green [4] para deducir, con un método diferente, las cotas superioresobtenidas por Jia [6], Chen [2] y Graham [5] respecto al máximo cardinal quepuede tener un conjunto Bh contenido en los primeros N enteros positivos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Bravo J., “Análisis de Fourier Finito y Conjuntos Bh[g]”, Trabajo de grado, Maestría en Ciencias-Matemáticas, Universidad del Valle, 2006

[2] Chen S., On the Size of Finite Sidon Sequences, Proc. Amer. Math. Soc, 121 (1994), 353–356.

[3] Erdös P. and Turán P., On a Problem of Sidon in Additive Number Theory and On Some Related Problems, Journal of the London Mathematical Society, 16 (1941), 212–215.

[4] Green B., The number of squares and Bh[g] sets, Acta Arithmética, 100 (2001), 365–390.

[5] Graham S. W., Bh Sequences, Analytic Number Theory, 1 (Allerton Park, IL, 1995), 431–449, Progress in Mathematics 138, Birkhäuser, Boston MA, 1996.

[6] Jia X., On B2k Sequences, Journal of Number Theory, 48 (1994), 183–196.

[7] Lindström B., A Remark on B4 Sequences, Journal of Combinatorial Theory, 7 (1969), 276–277.

[8] Singer J., A Theorem in Finite Projective Geometry and Some Applications to Number Theory, Transactions of
the American Mathematical Society, 43 (1938), 377–385.

[9] Terras A., “Fourier Analysis on Finite Groups and Aplications,” Cambridge University Press, second edition, San Francisco, 1999