Revista Integración, temas de matemáticas.
Vol. 28 No. 1 (2010): Revista Integración, temas de matemáticas
Research and Innovation Articles

Fourier Analysis on Zn and Bh sets

Jhon Jairo Bravo G.
Universidad del Cauca
Carlos Alberto Trujillo S.
Universidad del Cauca

Published 2010-06-09

Keywords

  • Sidon sets,
  • Bh sets

How to Cite

Bravo G., J. J., & Trujillo S., C. A. (2010). Fourier Analysis on Zn and Bh sets. Revista Integración, Temas De matemáticas, 28(1), 67–78. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2060

Abstract

A set A of positive integers is called a Bh set, if all sums ofh elements of A are different. In this paper we use basic properties ofFourier analysis on ZN and follow the style of Ben Green [4] to concludewith a different method, the upper bounds obtained by Jia [6], Chen [2] andGraham [5] with respect to the maximum cardinal that can have a Bh setcontained in the first N positive integers.

 

Downloads

Download data is not yet available.

References

[1] Bravo J., “Análisis de Fourier Finito y Conjuntos Bh[g]”, Trabajo de grado, Maestría en Ciencias-Matemáticas, Universidad del Valle, 2006

[2] Chen S., On the Size of Finite Sidon Sequences, Proc. Amer. Math. Soc, 121 (1994), 353–356.

[3] Erdös P. and Turán P., On a Problem of Sidon in Additive Number Theory and On Some Related Problems, Journal of the London Mathematical Society, 16 (1941), 212–215.

[4] Green B., The number of squares and Bh[g] sets, Acta Arithmética, 100 (2001), 365–390.

[5] Graham S. W., Bh Sequences, Analytic Number Theory, 1 (Allerton Park, IL, 1995), 431–449, Progress in Mathematics 138, Birkhäuser, Boston MA, 1996.

[6] Jia X., On B2k Sequences, Journal of Number Theory, 48 (1994), 183–196.

[7] Lindström B., A Remark on B4 Sequences, Journal of Combinatorial Theory, 7 (1969), 276–277.

[8] Singer J., A Theorem in Finite Projective Geometry and Some Applications to Number Theory, Transactions of
the American Mathematical Society, 43 (1938), 377–385.

[9] Terras A., “Fourier Analysis on Finite Groups and Aplications,” Cambridge University Press, second edition, San Francisco, 1999