Artículos científicos
Counterrotating Dust Disk Around a Schwarzschild Black Hole: New Fully Integrated Explicit Exact Solution
Palabras clave
- Classical General Relativity,
- exact solutions,
- self-gravitating systems,
- Einstein equations
Cómo citar
Gonzàlez, G. A., & Gutiérrez Piñeres, A. C. (2008). Counterrotating Dust Disk Around a Schwarzschild Black Hole: New Fully Integrated Explicit Exact Solution. Revista Integración, Temas De matemáticas, 26(2), 123–130. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/209
Resumen
The first fully integrated explicit exact solution of Einstein's field equations corresponding to the superposition of a counterrotating dust disk with a central black hole is presented. The obtained solution represents an infinite annular thin disk (a disk with an inner edge) around the Schwarsz-child black hole, and the corresponding to energy-momentum tensor agrees with all the energy conditions. The solution can also be interpreted as des-cribing a thin disk made of two counterrotating dust fluids that are also in agreement with all the energy conditions.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
[1] V. Karas, J-M. Hure and O. Semerák. Class. Quantum Grav. 21, R1-R51 (2004)
[2] J. P. S. Lemos and P. S. Letelier, Class. Quantum Grav. 10, L75 (1993).
[3] J. P. S. Lemos and P. S. Letelier, Phys. Rev D 49, 5135 (1994).
[4] J. P. S. Lemos and P. S. Letelier, Int. J. Mod. Phys. D 5, 53 (1996).
[5] O. Semerák and M. Zác˘ek, Class. Quantum Grav. ˘ 17, 1613 (2000).
[6] O. Semerák, Class. Quantum Grav. 19, 3829 (2002).
[7] M. Zác˘ek and O. Semerák, Czech. J. Phys. ˘ 52, 19 (2002).
[8] O. Semerák, Class. Quantum Grav. 20, 1613 (2003).
[9] O. Semerák, Class. Quantum Grav. 21, 2203 (2004).
[10] H. Stephani, D. Kramer, M. McCallum, C. Hoenselaers and E. Herlt, and ExactSolutions to Einsteins’s Field Equations (Second Edition, Cambridge University Press, Cambridge, England, 2003).
[11] P.S. Letelier and S. R. Oliveira, J. Math. Phys. 28, 165 (1987).
[12] A. Papapetrou and A. Hamouni, Ann. Inst. Henri Poincaré 9, 179 (1968).
[13] A. Lichnerowicz, C.R. Acad. Sci. 273, 528 (1971).
[14] A. H. Taub, J. Math. Phys. 21, 1423 (1980).
[15] E. Israel, Nuovo Cimento 44B, 1 (1966).
[16] E. Israel, Nuovo Cimento 48B, 463 (1967).
[17] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics.(Cambridge University Press, 2004).
[18] G. A. González and O. A. Espitia, Phys. Rev. D 68, 104028 (2003).
[2] J. P. S. Lemos and P. S. Letelier, Class. Quantum Grav. 10, L75 (1993).
[3] J. P. S. Lemos and P. S. Letelier, Phys. Rev D 49, 5135 (1994).
[4] J. P. S. Lemos and P. S. Letelier, Int. J. Mod. Phys. D 5, 53 (1996).
[5] O. Semerák and M. Zác˘ek, Class. Quantum Grav. ˘ 17, 1613 (2000).
[6] O. Semerák, Class. Quantum Grav. 19, 3829 (2002).
[7] M. Zác˘ek and O. Semerák, Czech. J. Phys. ˘ 52, 19 (2002).
[8] O. Semerák, Class. Quantum Grav. 20, 1613 (2003).
[9] O. Semerák, Class. Quantum Grav. 21, 2203 (2004).
[10] H. Stephani, D. Kramer, M. McCallum, C. Hoenselaers and E. Herlt, and ExactSolutions to Einsteins’s Field Equations (Second Edition, Cambridge University Press, Cambridge, England, 2003).
[11] P.S. Letelier and S. R. Oliveira, J. Math. Phys. 28, 165 (1987).
[12] A. Papapetrou and A. Hamouni, Ann. Inst. Henri Poincaré 9, 179 (1968).
[13] A. Lichnerowicz, C.R. Acad. Sci. 273, 528 (1971).
[14] A. H. Taub, J. Math. Phys. 21, 1423 (1980).
[15] E. Israel, Nuovo Cimento 44B, 1 (1966).
[16] E. Israel, Nuovo Cimento 48B, 463 (1967).
[17] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics.(Cambridge University Press, 2004).
[18] G. A. González and O. A. Espitia, Phys. Rev. D 68, 104028 (2003).