Artículos científicos
Publicado 2015-05-21
Palabras clave
- Números primos,
- seudoprimalidad fuerte,
- números de Midy,
- Teorema de Pocklington
Cómo citar
Castillo, J. H., García-Pulgarín, G., & Velásquez Soto, J. M. (2015). De los números de Midy a la primalidad. Revista Integración, Temas De matemáticas, 33(1), 1–10. https://doi.org/10.18273/revint.v33n1-2015001
Resumen
Utilizando propiedades de los números de Midy se define el concepto de q-seudoprimo base b, el cual extiende la idea de seudoprimo fuerte base b, y a partir de dicho concepto se establece un nuevo criterio de primalidad que refina el Teorema de Pocklington.
Para citar este artículo: J.H. Castillo, G. García-Pulgarín, J.M. Velásquez-Soto, De los números de Midy a la primalidad, Rev. Integr. Temas Mat. 33 (2015), no. 1, 1-10.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
- Adleman L.M., Pomerance C. and Rumely R.S., “On distinguishing prime numbers from composite numbers”, Ann. of Math. (2) 117 (1983), no. 1, 173–206.
- Agrawal M., Kayal N. and Saxena N., “PRIMES is in P”, Ann. of Math. (2) 160 (2004), no. 2, 781–793.
- Berrizbeitia P., “Sharpening PRIMES is in P for a large family of numbers”, Math. Comp. 74 (2005), no. 252, 2043–2059.
- Brillhart J. and Selfridge J.L., “Some factorizations of 2n ± 1 and related results”, Math. Comp. 21 (1967), 87-96; corrigendum, ibid. 21 (1967), 751.
- Castillo J.H., García-Pulgarín G. and Velásquez-Soto J.M., “Structure of associated sets to Midy’s Property”, Mat. Enseñ. Univ. 20 (2012), no. 1, 21–28.
- Cheng Q., “Primality proving via one round in ECPP and one iteration in AKS”, J. Cryptology. 20 (2007), no. 3, 375–387.
- Crandall R. and Pomerance C., Prime numbers. A computational perspective, Springer, New York, 2005.
- García-Pulgarín G. and Giraldo H., “Characterizations of Midy’s property”, Integers 9 (2009), 191–197.
- Gauss C.F., “Disquisitiones arithmeticae”, in Colección Enrique Pérez Arbeláez , Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Translated from the Latin by Hugo Barrantes Campos, Michael Josephy and Ángel Ruiz Zúñiga, with a preface by Ruiz Zúñiga, 10 (1995).
- Lenstra H.W. Jr. and Pomerance C., “Primality testing with gaussian periods”, https://www.math.dartmouth.edu/ carlp/aks041411.pdf, consultado el día 22 de abril de
- , unpublished.
- Motose K., “On values of cyclotomic polynomials. II”, Math. J. Okayama Univ. 37 (1995), 27–36.
- Nathanson M.B., Elementary methods in number theory, Springer-Verlag, New York, 2000.
- Shevelev V., Castillo J.H., García-Pulgarín G. and Velásquez-Soto J.M., “Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers”, J. Integer Seq. 15
- (2012), no. 7, 1-10.
- Zhang Z., “Notes on some new kinds of pseudoprimes”, Math. Comp. 75 (2006), no. 253, 451–460.