Revista Integración, temas de matemáticas.
Vol. 27 Núm. 1 (2009): Revista Integración, temas de matemáticas
Artículos científicos

Ecuaciones de Boussinesq: estimaciones uniformes en el tiempo de las aproximaciones de Galerkin espectrales

R. C. Cabrales
Universidad del Bío-Bío
Biografía
M. Poblete-Cantellano
Universidad de Atacama
Biografía
M. A. Rojas-Medar
Universidad del Bío-Bío
Biografía

Publicado 2009-03-05

Palabras clave

  • Método de Galerkin,
  • Estimaciones uniforme en el tiempo,
  • Modelo de Boussinesq

Cómo citar

Cabrales, R. C., Poblete-Cantellano, M., & Rojas-Medar, M. A. (2009). Ecuaciones de Boussinesq: estimaciones uniformes en el tiempo de las aproximaciones de Galerkin espectrales. Revista Integración, Temas De matemáticas, 27(1), 37–57. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/500

Resumen

Obtenemos cotas para el error de las soluciones fuertes de las ecuaciones de Boussinesq que modelan los fluidos incompresibles y conductores de calor, suponiendo que dichas soluciones son condicionalmente asintóticamente estables. 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Braz e Silva P., Rojas-Medar M.A. “Error Bounds for Semi-Galerkin Approximations of Nonhomogeneous Incompressible Fluids”, J. Math. Fluid Mech., 11 (2009), n◦ 2, 186-207.

[2] Heywood J.G. “An error estimate uniform in time for spectral Galerkin approximations of the Navier-Stokes problem, Pacific J. Math., 98 (1982), 333-345.

[3] Hishida T. “Existence and regularizing properties of solutions for the nonstationary convection problem”, Funkcialy Ekvaciy, 34 (1991), 449-474.

[4] Joseph D.D. Stability of Fluid Motion, Springer-Verlag, Berlin, 1976.

[5] Korenev N.K. “On some problems of convection in a viscous incompressible fluid”, Vestnik Leningrand Univ. Math., 4 (1977), 125-137.

[6] Morimoto H. “Nonstationary Boussinesq equations”, J. Fac. Sci., Univ Tokyo, Sect., IA Math., 39 (1992), 61-75.

[7] Oeda K. “Periodic solutions of the heat convection equation in exterior domain”, Proc. Japan Acad., 73 (1997), Ser. A, 49-54.

[8] Rautmann R. “On the convergence rate of nonstationary Navier-Stokes approximations, Approximation methods for Navier-Stokes problems” (Proc. Sympos., Univ. Paderborn, Paderborn, 1979) (Berlin), Lecture Notes in Math., vol. 771, Springer, 1980, pp. 425-449.

[9] Rojas-Medar M.A. and Lorca, S.A. “The equation of a viscous incompressible chemical active fluid I: uniqueness and existence of the local solutions”, Rev. Mat. Apl., 16 (1995), 57-80.

[10] Rojas-Medar M.A. and Lorca S.A. “The equation of a viscous incompressible chemical active fluid II: regularity of solutions”, Rev. Mat. Apl., 16 (1995), 81- 95.

[11] Rojas-Medar M.A. and Lorca S.A. “Global strong solution of the equations for the motion of a chemical active fluid”, Matemática Contemporânea, V. 8 (1995), 319-335.

[12] Rojas-Medar M. A. and Lorca S. A. “An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid”, Rev. Mat. Univ. Complut, Madrid, 8 (1995), no. 2, 431–458.

[13] Simon J. “Non-homogeneous viscous incompressible fluids: existence of velocity, density and pressure”, SIAM J. Math. Anal. 21(5) (1990), 1093-1117.

[14] W. von Wahl. “The equations of Navier-Stokes and abstract parabolic equations”,Aspects of Mathematics E8, Friedr. Vieweg-Sohn, Braunschweig, 1985.