Revista Integración, temas de matemáticas.
Vol. 26 Núm. 1 (2008): Revista Integración, temas de matemáticas
Artículos científicos

Nonsmooth multiobjective fractional programming with generalized convexity

Lucelina Batista Santos
Biografía
Rafaela Osuna-Gómez
Biografía
Marko A. Rojas-Medar
Biografía

Publicado 2008-02-29

Palabras clave

  • Vector fractional programming,
  • Clarke generalized gradient,
  • duality,
  • weak efficiency,
  • optimality conditions

Cómo citar

Batista Santos, L., Osuna-Gómez, R., & Rojas-Medar, M. A. (2008). Nonsmooth multiobjective fractional programming with generalized convexity. Revista Integración, Temas De matemáticas, 26(1), 1–12. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/52

Resumen

En el artículo estudiamos una clase de problemas fraccionales multiobjetivos no convexos y no diferenciables. Usamos la transformación propuesta por Dinkelbach [2] y Jagannathan [4] y obtenemos condiciones de optimalidad para soluciones débilmente eficientes de dichos problemas. Además, definimos un problema dual y establecemos algunos resultados sobre dualidad. Para lograrlo, utilizamos una noción de convexidad generalizada llamada KT-invexidad. El artículo generaliza los resultados obtenidos por Osuna-Gómez et al. en [6], en donde los autores consideran problemas

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] F.H. Clarke, Optimization and nonsmooth analysis, Wiley, 1983.

[2] W. Dinklebach, “On nonlinear fractional programming”, Manegement Science, 137, pp. 492-498, 1967.

[3] A.M. Geoffrion, “Proper efficiency and the theory of vector maximization”, J. Math.Anal. Appl., 22, pp. 618-630, 1968.

[4] R. Jagannathan, “Duality for nonlinear fractional programs”, Zeitschrift fur Operations
Research, 17, pp. 1-3, 1973.

[5] D.H. Martin, “The essence of invexity”, J. Math. Anal. Appl. 47, pp. 65-76, 1985.

[6] R. Osuna-Gómez, A. Rufián-Lizana, P. Ruiz-Canales, “Multiobjective fractional programming with generalized invexity”, Sociedad de Estadística e Investigación Operativa TOP, vol. 8, no. 1, pp. 97-110, 2000.

[7] R. Osuna-Gómez, A. Rufián-Lizana, A. Beato-Moreno, “Generalized convexity in multiobjective programming”, Journal of Mathematical Analysis and Applications, vol. 23, pp. 467-475, 1999.

[8] P.H. Sach, D.S. Kim, G.M. Lee, “Invexity as necessary optimality condition in nonsmooth programs”, J. Korean Math. Soc. 43, no.2, pp. 241-258, 2006.

[9] S. Schaible, “A survey of fractional programming”, In: Generalized Convexity in Optimization and Economics. Eds. S. Schaible, W. T. Ziemba. Academic Press.