Publicado 2016-05-06
Palabras clave
- Espacios de Krein,
- W-espacios,
- W-métricas,
- construcción de marcos,
- acoplamiento de marcos
- marcos similares ...Más
Cómo citar
Derechos de autor 2016 German Escobar, Kevin Esmeral, Osmin Ferrer
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
Se definen marcos unitariamente equivalentes en espacios de Hilbert con W-métricas, y se da una caracterización de ellos comparando sus respectivos operadores de análisis. A partir de un espacio de Hiblert con un marco se construye un espacio de Hilbert con W-métrica y un marco unitariamente equivalente al dado. Finalmente, se muestra que el acoplamiento de dos marcos es un marco.
Para citar este artículo: G. Escobar, K. Esmeral, O. Ferrer, Construction and coupling of frames in Hilbert spaces with W-metrics, Rev. Integr. Temas. Mat. 34 (2016), No. 1, 81-93.
Descargas
Referencias
- Acosta-Humánez P., Esmeral K. and Ferrer O., “Frames of subspaces in Hilbert spaces with W -metrics”, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 23 (2015), No. 2, 5–22.
- Ali S.T., Antoine J.P. and Gazeau J.P., Coherent states, wavelets and their generalizations, Springer-Verlag, New York, 2000.
- Ali S.T., Antoine J.P. and Gazeau J.P., “Continuous frames in Hilbert space”, Ann. Physics 222 (1993), No. 1, 1–37.
- Ali S.T., Antoine J.P. and Gazeau J.P., “Square integrability of group representations on homogeneus spaces. I. Reproducing triples and frames”, Ann. Inst. H. Poincaré Phys.Théor. 55 (1991), No. 4 , 829–855.
- Azizov T.Y. and Iokhvidov I.S., “Linear operators in Hilbert spaces with G-metric”, Russian Math. Surveys 26 (1971), No. 4 45–97.
- Azizov T.Y. and Iokhvidov I.S., Linear operator in spaces with an indefinite metric, John Wiley & Sons Ltd., Chichester, 1989.
- Bognár J., Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974.
- Casazza P.G., “The art of frame theory”, Taiwanese J. Math. 4 (2000), No. 2, 129–201.
- Casazza P.G. and Leon M.T., “Existence and construction of finite frames with a given frame operator”, Int. J. Pure Appl. Math. 63 (2010), No. 2, 149–157.
- Christensen O., An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA, 2003.
- Daubechies I., “The wavelet transform, time-frequency localization and signal analysis”,IEEE Trans. Inform. Theory 36 (1990), No. 5, 961–1005.
- Daubechies I., Grossmann A. and Meyer Y., “Painless nonorthogonal expansions”, J. Math. Phys. 27 (1986), No. 5, 1271–1283.
- Duffin R.J. and Schaeffer A.C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc. 72 (1952), 341–366.
- Esmeral K., Ferrer O. and Wagner E., “Frames in Krein spaces arising from a non-regular W-metric”, Banach J. Math. Anal. 9 (2015), No. 1 , 1–16.
- Găvruţa P., “On the duality of fusion frames”, J. Math. Anal. Appl. 333 (2007), No. 2, 871–879.
- Giribet J.I., Maestripieri A., Martínez Pería F. and Massey P.G., “On a family of frames for Krein spaces”, arXiv:1112.1632v1.
- Giribet J.I., Maestripieri A., Martínez Pería F. and Massey P.G., “On frames for Krein spaces”, J. Math. Anal. Appl. 393 (2012), No. 1, 122–137.
- Han D., Kornelson K., Larson D.R. and Weber E., Frames for undergraduates, American Mathematical Society, Providence, RI, 2007.
- Han D. and Larson D.R., “Frames, bases and group representations”, Mem. Amer. Math. Soc. 147 (2000) No. 697, 94 pp.
- Peng I. and Waldron S., “Signed frames and Hadamard products of Gram matrices”, Linear Algebra Appl. 347 (2002), 131–157.
- Rahimi A., Najati, A. and Dehghan Y.N., “Continuous frames in Hilbert spaces”, Methods Funct. Anal. Topology 12 (2006), No. 2, 170–182.