Revista Integración, temas de matemáticas.
Vol. 34 No. 1 (2016): Revista Integración
Research and Innovation Articles

Construction and coupling of frames in Hilbert spaces with W-metrics

German Escobar
Universidad Surcolombiana
Kevin Esmeral
Universidad de Sucre
Osmin Ferrer
Universidad de Sucre

Published 2016-05-06

Keywords

  • Krein spaces,
  • W-spaces,
  • W-metrics,
  • construction of frames,
  • coupling of frames,
  • similar frames
  • ...More
    Less

How to Cite

Escobar, G., Esmeral, K., & Ferrer, O. (2016). Construction and coupling of frames in Hilbert spaces with W-metrics. Revista Integración, Temas De matemáticas, 34(1), 81–93. https://doi.org/10.18273/revint.v34n1-2016005

Abstract

A definition of frames unitarily equivalent in Hilbert spaces with W-metrics is stated, and a characterization is given in terms of their respective analysis operators. From a Hilbert space with a frame we construct a Hilbert sapace with W-metric and a frame unitarily equivalent to the given one. Finally, we prove that the coupling of two frames is a frame.

To cite this article: G. Escobar, K. Esmeral, O. Ferrer, Construction and coupling of frames in Hilbert spaces with W-metrics, Rev. Integr. Temas. Mat. 34 (2016), No. 1, 81-93. 

Downloads

Download data is not yet available.

References

  1. Acosta-Humánez P., Esmeral K. and Ferrer O., “Frames of subspaces in Hilbert spaces with W -metrics”, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 23 (2015), No. 2, 5–22.
  2. Ali S.T., Antoine J.P. and Gazeau J.P., Coherent states, wavelets and their generalizations, Springer-Verlag, New York, 2000.
  3. Ali S.T., Antoine J.P. and Gazeau J.P., “Continuous frames in Hilbert space”, Ann. Physics 222 (1993), No. 1, 1–37.
  4. Ali S.T., Antoine J.P. and Gazeau J.P., “Square integrability of group representations on homogeneus spaces. I. Reproducing triples and frames”, Ann. Inst. H. Poincaré Phys.Théor. 55 (1991), No. 4 , 829–855.
  5. Azizov T.Y. and Iokhvidov I.S., “Linear operators in Hilbert spaces with G-metric”, Russian Math. Surveys 26 (1971), No. 4 45–97.
  6. Azizov T.Y. and Iokhvidov I.S., Linear operator in spaces with an indefinite metric, John Wiley & Sons Ltd., Chichester, 1989.
  7. Bognár J., Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974.
  8. Casazza P.G., “The art of frame theory”, Taiwanese J. Math. 4 (2000), No. 2, 129–201.
  9. Casazza P.G. and Leon M.T., “Existence and construction of finite frames with a given frame operator”, Int. J. Pure Appl. Math. 63 (2010), No. 2, 149–157.
  10. Christensen O., An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA, 2003.
  11. Daubechies I., “The wavelet transform, time-frequency localization and signal analysis”,IEEE Trans. Inform. Theory 36 (1990), No. 5, 961–1005.
  12. Daubechies I., Grossmann A. and Meyer Y., “Painless nonorthogonal expansions”, J. Math. Phys. 27 (1986), No. 5, 1271–1283.
  13. Duffin R.J. and Schaeffer A.C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc. 72 (1952), 341–366.
  14. Esmeral K., Ferrer O. and Wagner E., “Frames in Krein spaces arising from a non-regular W-metric”, Banach J. Math. Anal. 9 (2015), No. 1 , 1–16.
  15. Găvruţa P., “On the duality of fusion frames”, J. Math. Anal. Appl. 333 (2007), No. 2, 871–879.
  16. Giribet J.I., Maestripieri A., Martínez Pería F. and Massey P.G., “On a family of frames for Krein spaces”, arXiv:1112.1632v1.
  17. Giribet J.I., Maestripieri A., Martínez Pería F. and Massey P.G., “On frames for Krein spaces”, J. Math. Anal. Appl. 393 (2012), No. 1, 122–137.
  18. Han D., Kornelson K., Larson D.R. and Weber E., Frames for undergraduates, American Mathematical Society, Providence, RI, 2007.
  19. Han D. and Larson D.R., “Frames, bases and group representations”, Mem. Amer. Math. Soc. 147 (2000) No. 697, 94 pp.
  20. Peng I. and Waldron S., “Signed frames and Hadamard products of Gram matrices”, Linear Algebra Appl. 347 (2002), 131–157.
  21. Rahimi A., Najati, A. and Dehghan Y.N., “Continuous frames in Hilbert spaces”, Methods Funct. Anal. Topology 12 (2006), No. 2, 170–182.