Published 2016-05-06
Keywords
- Krein spaces,
- W-spaces,
- W-metrics,
- construction of frames,
- coupling of frames
- similar frames ...More
How to Cite
Copyright (c) 2016 German Escobar, Kevin Esmeral, Osmin Ferrer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
A definition of frames unitarily equivalent in Hilbert spaces with W-metrics is stated, and a characterization is given in terms of their respective analysis operators. From a Hilbert space with a frame we construct a Hilbert sapace with W-metric and a frame unitarily equivalent to the given one. Finally, we prove that the coupling of two frames is a frame.
To cite this article: G. Escobar, K. Esmeral, O. Ferrer, Construction and coupling of frames in Hilbert spaces with W-metrics, Rev. Integr. Temas. Mat. 34 (2016), No. 1, 81-93.
Downloads
References
- Acosta-Humánez P., Esmeral K. and Ferrer O., “Frames of subspaces in Hilbert spaces with W -metrics”, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 23 (2015), No. 2, 5–22.
- Ali S.T., Antoine J.P. and Gazeau J.P., Coherent states, wavelets and their generalizations, Springer-Verlag, New York, 2000.
- Ali S.T., Antoine J.P. and Gazeau J.P., “Continuous frames in Hilbert space”, Ann. Physics 222 (1993), No. 1, 1–37.
- Ali S.T., Antoine J.P. and Gazeau J.P., “Square integrability of group representations on homogeneus spaces. I. Reproducing triples and frames”, Ann. Inst. H. Poincaré Phys.Théor. 55 (1991), No. 4 , 829–855.
- Azizov T.Y. and Iokhvidov I.S., “Linear operators in Hilbert spaces with G-metric”, Russian Math. Surveys 26 (1971), No. 4 45–97.
- Azizov T.Y. and Iokhvidov I.S., Linear operator in spaces with an indefinite metric, John Wiley & Sons Ltd., Chichester, 1989.
- Bognár J., Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974.
- Casazza P.G., “The art of frame theory”, Taiwanese J. Math. 4 (2000), No. 2, 129–201.
- Casazza P.G. and Leon M.T., “Existence and construction of finite frames with a given frame operator”, Int. J. Pure Appl. Math. 63 (2010), No. 2, 149–157.
- Christensen O., An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA, 2003.
- Daubechies I., “The wavelet transform, time-frequency localization and signal analysis”,IEEE Trans. Inform. Theory 36 (1990), No. 5, 961–1005.
- Daubechies I., Grossmann A. and Meyer Y., “Painless nonorthogonal expansions”, J. Math. Phys. 27 (1986), No. 5, 1271–1283.
- Duffin R.J. and Schaeffer A.C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc. 72 (1952), 341–366.
- Esmeral K., Ferrer O. and Wagner E., “Frames in Krein spaces arising from a non-regular W-metric”, Banach J. Math. Anal. 9 (2015), No. 1 , 1–16.
- Găvruţa P., “On the duality of fusion frames”, J. Math. Anal. Appl. 333 (2007), No. 2, 871–879.
- Giribet J.I., Maestripieri A., Martínez Pería F. and Massey P.G., “On a family of frames for Krein spaces”, arXiv:1112.1632v1.
- Giribet J.I., Maestripieri A., Martínez Pería F. and Massey P.G., “On frames for Krein spaces”, J. Math. Anal. Appl. 393 (2012), No. 1, 122–137.
- Han D., Kornelson K., Larson D.R. and Weber E., Frames for undergraduates, American Mathematical Society, Providence, RI, 2007.
- Han D. and Larson D.R., “Frames, bases and group representations”, Mem. Amer. Math. Soc. 147 (2000) No. 697, 94 pp.
- Peng I. and Waldron S., “Signed frames and Hadamard products of Gram matrices”, Linear Algebra Appl. 347 (2002), 131–157.
- Rahimi A., Najati, A. and Dehghan Y.N., “Continuous frames in Hilbert spaces”, Methods Funct. Anal. Topology 12 (2006), No. 2, 170–182.