Revista Integración, temas de matemáticas.
Vol. 37 Núm. 1 (2019): Revista Integración, temas de matemáticas
Artículos científicos

Una ecuación elíptica con potencial aleatorio y no linealidad supercrítica

L. Cioletti
Universidade de Brasília, Departamento de Matemática, Brasília, Brazil
L. C. F. Ferreira
Universidade Estadual de Campinas, IMECC - Departamento de Matemática, Campinas, Brazil.
M. Furtado
Universidade de Brasília, Departamento de Matemática, Brasília, Brazil.

Publicado 2019-02-19

Palabras clave

  • Ecuaciones elípticas,
  • potenciales aleatorios,
  • ecuaciones no lineales aleatorias

Cómo citar

Cioletti, L., Ferreira, L. C. F., & Furtado, M. (2019). Una ecuación elíptica con potencial aleatorio y no linealidad supercrítica. Revista Integración, Temas De matemáticas, 37(1), 1–16. https://doi.org/10.18273/revint.v37n1-2019001

Resumen

Estamos interesados en una ecuación elíptica no homogénea con potencial aleatorio y no linealidad supercrítica. Obtenemos la existencia de solución casi seguramente para una clase de potenciales que incluye continuos y discretos. Además, proporcionamos una ley de grandes números para las soluciones obtenidas por conjuntos independientes y estimamos el valor esperado para sus normas L∞.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Ambrosetti A., Badiale M. and Cingolani S., “Semiclassical states of nonlinear Schrödinger equations”, Arch. Ration. Mech. Anal. 140 (1997), No. 3, 285–300.

[2] Ambrosetti A., Malchiodi A. and Secchi S., “Multiplicity results for some nonlinear Schrödinger equations with potentials”, Arch. Ration. Mech. Anal. 159 (2001), No.3, 253–271.

[3] Bal G., Komorowski T. and Ryzhik L., “Asymptotic of the Solutions of the Random Schrödinger Equation”, Arch. Ration. Mech. Anal. 200 (2011), No.2, 613–664.

[4] Beck L. and Flandoli F., “A regularity theorem for quasilinear parabolic systems under random perturbations”, J. Evol. Equ. 13 (2013), No. 4, 829–874.

[5] Bourgain J., “Nonlinear Schrödinger Equation with a Random Potential”, Illinois J. Math. 50 (2006), No. 1-4, 183–188.

[6] Conlon J.G. and Naddaf A., “Green’s Functions for Elliptic and Parabolic Equations with Random Coefficients”, New York J. Math. 6 (2000), 153–225.

[7] Dawson D.A. and Kouritzin M., “Invariance Principles for Parabolic Equations with Random Coefficients”, J. Funct. Anal. 149 (1997), No. 2, 377–414.

[8] Del Pino M. and Felmer P., “Local Mountain Pass for semilinear elliptic problems in unbounded domains”, Calc. Var. Partial Differential Equations 4 (1996), No. 2, 121–137.

[9] Evans L.C., Partial differential equations, Graduate Studies in Mathematics 19, Amer. Math. Soc., Providence, RI, 1998.

[10] Fannjiang A., “Self-Averaging Scaling Limits for Random Parabolic Waves”, Arch. Ratio. Mech. Anal. 175 (2008), No. 3, 343–387.

[11] Ferreira L.C.F. and Castañeda-Centurión N.F., “A Fourier analysis approach to elliptic equations with critical potentials and nonlinear derivative terms”, Milan J. Math. 85 (2017), No. 2, 187–213.

[12] Ferreira L.C.F. and Mesquita C.A.A.S., “Existence and symmetries for elliptic equations with multipolar potentials and polyharmonic operators”, Indiana Univ. Math. J. 62 (2013), No. 6, 1955–1982.

[13] Ferreira L.C.F. and Montenegro M., “A Fourier approach for nonlinear equations with singular data”, Israel J. Math. 193 (2013), No. 1, 83–107.

[14] Ferreira L.C.F. and Montenegro M., “Existence and asymptotic behavior for elliptic equations with singular anisotropic potentials”, J. Differential Equations 250 (2011), No.4, 2045–2063.

[15] Ferreira L.C.F., Medeiros E.S. and Montenegro M., “A class of elliptic equations in anisotropic spaces”, Ann. Mat. Pura Appl. 192 (2013), No. 4, 539–552.

[16] Flandoli F., “Random perturbation of PDEs and fluid dynamic models”, in Saint Flour Summer School Lectures 2010, Lecture Notes in Math., Springer (2011), Heidelberg, 1–176.

[17] Hille E. and Phillips R.S., Functional Analysis and Semigroups, Amer. Math Soc. Colloquium Publ. 31, Amer. Math. Soc., Providence, Rhode, 1957.

[18] KirschW., “An invitation to random Schrödinger operators”, in Random Schrödinger operators, Vol. 25 of Panor. Synthèses, Soc. Math. France , Paris, (2008), 1-119.

[19] Parthasarathy K.R., Probability Measures on Metric Spaces, Academic Press, Providence, 1967.

[20] Rabinowitz P.H., “On a class of nonlinear Schrödinger equations”, Z. Angew Math. Phys. 43 (1992), No. 2, 270–291.

[21] Safronov O., “Absolutely continuous spectrum of one random elliptic operator”, J. Funct. Anal. 255 (2008), No. 3, 755–767.