Revista Integración, temas de matemáticas.
Vol. 37 No. 1 (2019): Revista Integración, temas de matemáticas
Research and Innovation Articles

An elliptic equation with random potential and supercritical nonlinearity

L. Cioletti
Universidade de Brasília, Departamento de Matemática, Brasília, Brazil.
L. C. F. Ferreira
Universidade Estadual de Campinas, IMECC - Departamento de Matemática, Campinas, Brazil.
M. Furtado
Universidade de Brasília, Departamento de Matemática, Brasília, Brazil.

Published 2019-02-19

Keywords

  • Elliptic equations,
  • Random potentials,
  • Random nonlinear equations

How to Cite

Cioletti, L., Ferreira, L. C. F., & Furtado, M. (2019). An elliptic equation with random potential and supercritical nonlinearity. Revista Integración, Temas De matemáticas, 37(1), 1–16. https://doi.org/10.18273/revint.v37n1-2019001

Abstract

We are concerned with a nonhomogeneous elliptic equation with random potential and supercritical nonlinearity. Existence of solution is obtained almost surely for a class of potentials that includes continuum and discrete ones. Also, we provide a law of larger numbers for the obtained solutions by independent ensembles and estimate the expected value for their L∞-norms.

Downloads

Download data is not yet available.

References

[1] Ambrosetti A., Badiale M. and Cingolani S., “Semiclassical states of nonlinear Schrödinger equations”, Arch. Ration. Mech. Anal. 140 (1997), No. 3, 285–300.

[2] Ambrosetti A., Malchiodi A. and Secchi S., “Multiplicity results for some nonlinear Schrödinger equations with potentials”, Arch. Ration. Mech. Anal. 159 (2001), No.3, 253–271.

[3] Bal G., Komorowski T. and Ryzhik L., “Asymptotic of the Solutions of the Random Schrödinger Equation”, Arch. Ration. Mech. Anal. 200 (2011), No.2, 613–664.

[4] Beck L. and Flandoli F., “A regularity theorem for quasilinear parabolic systems under random perturbations”, J. Evol. Equ. 13 (2013), No. 4, 829–874.

[5] Bourgain J., “Nonlinear Schrödinger Equation with a Random Potential”, Illinois J. Math. 50 (2006), No. 1-4, 183–188.

[6] Conlon J.G. and Naddaf A., “Green’s Functions for Elliptic and Parabolic Equations with Random Coefficients”, New York J. Math. 6 (2000), 153–225.

[7] Dawson D.A. and Kouritzin M., “Invariance Principles for Parabolic Equations with Random Coefficients”, J. Funct. Anal. 149 (1997), No. 2, 377–414.

[8] Del Pino M. and Felmer P., “Local Mountain Pass for semilinear elliptic problems in unbounded domains”, Calc. Var. Partial Differential Equations 4 (1996), No. 2, 121–137.

[9] Evans L.C., Partial differential equations, Graduate Studies in Mathematics 19, Amer. Math. Soc., Providence, RI, 1998.

[10] Fannjiang A., “Self-Averaging Scaling Limits for Random Parabolic Waves”, Arch. Ratio. Mech. Anal. 175 (2008), No. 3, 343–387.

[11] Ferreira L.C.F. and Castañeda-Centurión N.F., “A Fourier analysis approach to elliptic equations with critical potentials and nonlinear derivative terms”, Milan J. Math. 85 (2017), No. 2, 187–213.

[12] Ferreira L.C.F. and Mesquita C.A.A.S., “Existence and symmetries for elliptic equations with multipolar potentials and polyharmonic operators”, Indiana Univ. Math. J. 62 (2013), No. 6, 1955–1982.

[13] Ferreira L.C.F. and Montenegro M., “A Fourier approach for nonlinear equations with singular data”, Israel J. Math. 193 (2013), No. 1, 83–107.

[14] Ferreira L.C.F. and Montenegro M., “Existence and asymptotic behavior for elliptic equations with singular anisotropic potentials”, J. Differential Equations 250 (2011), No.4, 2045–2063.

[15] Ferreira L.C.F., Medeiros E.S. and Montenegro M., “A class of elliptic equations in anisotropic spaces”, Ann. Mat. Pura Appl. 192 (2013), No. 4, 539–552.

[16] Flandoli F., “Random perturbation of PDEs and fluid dynamic models”, in Saint Flour Summer School Lectures 2010, Lecture Notes in Math., Springer (2011), Heidelberg, 1–176.

[17] Hille E. and Phillips R.S., Functional Analysis and Semigroups, Amer. Math Soc. Colloquium Publ. 31, Amer. Math. Soc., Providence, Rhode, 1957.

[18] KirschW., “An invitation to random Schrödinger operators”, in Random Schrödinger operators, Vol. 25 of Panor. Synthèses, Soc. Math. France , Paris, (2008), 1-119.

[19] Parthasarathy K.R., Probability Measures on Metric Spaces, Academic Press, Providence, 1967.

[20] Rabinowitz P.H., “On a class of nonlinear Schrödinger equations”, Z. Angew Math. Phys. 43 (1992), No. 2, 270–291.

[21] Safronov O., “Absolutely continuous spectrum of one random elliptic operator”, J. Funct. Anal. 255 (2008), No. 3, 755–767.