Revista Integración, temas de matemáticas.
Vol. 9 No. 2 (1991): Revista Integración, temas de matemáticas
Research and Innovation Articles

Extension of Embeddings of Wallman remainders

Sonia Barreto
Interamerican University
Laura Cuevas
University Of Puerto Rico
Darreil W. Hajek
University Of Puerto Rico

Published 1991-10-25

How to Cite

Barreto, S., Cuevas, L., & Hajek, D. W. (1991). Extension of Embeddings of Wallman remainders. Revista Integración, Temas De matemáticas, 9(2), 73–83. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/1041

Abstract

In this paper we show that the embedding of a Wallman remainder need not be a Wallman extendible function. Even If the embedding is Wallman extendible, it need not be uniquely extendible. We show, however, that If the space X is Hausdorff and if the embedding of WX\X in WX is Wallman extendible, then the extension must be unique. Further, if X is regular and if the embedding of WX\X in WX Is Wallman extendible, then this embedding is a WC function.

 

Downloads

Download data is not yet available.