Revista Integración, temas de matemáticas.
Vol. 38 No. 2 (2020): Revista integración, temas de matemáticas
Research and Innovation Articles

Some topological properties of C-normality

Irvin E. Soberano González
Universidad Juárez Autónoma de Tabasco
Gerardo Delgadillo Piñón
Universidad Juárez Autónoma de Tabasco
Reynaldo Rojas Hernández
Universidad Michoacana de San Nicolás de Hidalgo
cover

Published 2020-11-20

Keywords

  • Normality,
  • local compactness,
  • epi-normality,
  • compactness

How to Cite

Soberano González, I. E., Delgadillo Piñón, G., & Rojas Hernández, R. (2020). Some topological properties of C-normality. Revista Integración, Temas De matemáticas, 38(2), 93–102. https://doi.org/10.18273/revint.v38n2-2020002

Abstract

A topological space X is C-normal if there exists a bijective function f : X → Y , for some normal space Y , such that the restriction f ↾C : C → f(C) is a homeomorphism for each compact C ⊂ X. The purpose of this work is to extend the known classes of C-normal spaces and clarify the behavior of C-normality under several usual topological operations; in particular, it is proved that C-normality is not preserved under closed subspaces, unions, continuous and closed images, and inverse images under perfect functions. These results are used to answer some questions raised in [1], [2] and [6].

Downloads

Download data is not yet available.

References

AlZahrani S. and Kalantan L., “C-Normal Topological Property”, Filomat, 31 (2017), No. 2, 407-411. doi: 10.2298/FIL1702407A.

AlZahrani S. and Kalantan L., “Epinormality”, J. Nonlinear Sci. Appl., 9 (2016), No. 9, 5398-5402. doi: 10.22436/jnsa.009.09.08.

Arkhangel’skii A.V., Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992.

Buzkayova R.Z., “On the product of two normal spaces”, Moscow Univ. Math. Bull., 49 (1994), No. 5, 52-53.

Engelking R., General Topology, Heldermann Verlag, Berlín, 1989.

Saeed M.M., “Countable Normality”. arXiv:1709.10404.

Saeed M.M., Kalantan L. and Alzumi H., “C-paracompactness and C2-paracompactness”, Turk. J. Math., 43 (2019), 9-20. doi: 10.3906/mat-1804-54.