Revista Integración, temas de matemáticas.
Vol. 38 No. 2 (2020): Revista integración, temas de matemáticas
Research and Innovation Articles

Mathematical modelling for malaria under resistance and population movement

Cristhian Montoya
Pontificia Universidad Católica de Chile
Jhoana P. Romero Leiton
Universidad Cesmag
cover

Published 2020-11-20

Keywords

  • Insecticides,
  • antimalarial drug,
  • qualitative analysis,
  • stability,
  • bifurcation

How to Cite

Montoya, C., & Romero Leiton, J. P. (2020). Mathematical modelling for malaria under resistance and population movement. Revista Integración, Temas De matemáticas, 38(2), 133–163. https://doi.org/10.18273/revint.v38n2-2020006

Abstract

In this work, two mathematical models for malaria under resistance are presented. More precisely, the first model shows the interaction between humans and mosquitoes inside a patch under infection of malaria when the human population is resistant to antimalarial drug and mosquitoes population is resistant to insecticides. For the second model, human–mosquitoes population movements in two patches is analyzed under the same malaria transmission dynamic established in a patch. For a single patch, existence and stability conditions for the equilibrium solutions in terms of the local basic reproductive number are developed. These results reveal the existence of a forward bifurcation and the global stability of disease–free equilibrium. In the case of two patches, a theoretical and numerical framework on sensitivity analysis of parameters is presented. After that, the use of antimalarial drugs and insecticides are incorporated as control strategies and an optimal control problem is formulated. Numerical experiments are carried out in both models to show the feasibility of our theoretical results.

Downloads

Download data is not yet available.

References

Agusto F. B.,“Malaria drug resistance: The impact of human movement and spatial heterogeneity”, Bull. Math. Biol., 76 (2014), No. 7, 1607-1641. doi: 10.1007/s11538-014-9970-6

Aldila D., Nuraini N., Soewono E. and Supriatna A., “Mathematical model of temephos resistance in aedes aegypti mosquito population”, AIP Conference Proceedings, vol. 1589, 2014, 460-463. doi: 10.1063/1.4868843

Alphey N, Coleman P. G., Donnelly C. A. and Alphey L., “Managing insecticide resistance by mass release of engineered insects”, J. Econom. Entomology, 100 (2007), No. 5, 1642-1649. doi: 10.1603/0022 0493(2007)100[1642:MIRBMR]2.0.CO;2
Anderson B., Jackson J. and Sitharam M., “Descartes’ rule of signs revisited”, The American Mathematical Monthly, 105 (1998), No. 5, 447-451. doi: 10.2307/3109807

Aneke S., “Mathematical modelling of drug resistant malaria parasites and vector populations”, Math. Methods Appl. Sci., 25 (2002), No. 4, 335-346. doi: 10.1002/mma.291

Bacaër N. and Sokhna C., “A reaction-diffusion system modeling the spread of resistance to an antimalarial drug”, Math. Biosci. Eng., 2 (2005), No. 2, 227-238. doi: 10.3934/mbe.2005.2.227

Barrios E., Lee S. and Vasilieva O., “Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of cali, colombia”, J. Theoret. Biol., 453 (2018), 14-39. doi: 10.1016/j.jtbi.2018.05.015

Bichara D. and Iggidr A., “Multi-patch and multi-group epidemic models: a new framework”, J. Theoret. Biol., 77 (2018), No. 1, 107-134. doi: 10.1007/s00285-017-1191-9

Bloland P.B., Drug resistance in malaria, World Health Organization, Geneva, 2001.

Bock W. and Jayathunga Y., “Optimal control and basic reproduction numbers for a compartmental spatial multipatch dengue model”, Math. Methods Appl. Sci. 41 (2018), No. 9, 3231-3245. doi: 10.1002/mma.4812

Castillo-Chavez C. and Song B., “Dynamical models of tuberculosis and their applications”, Math. Biosci. Eng., 1 (2004), No. 2, 361-404. doi: 10.3934/mbe.2004.1.361

Chitnis N., Hyman J.M. and Cushing J.M., “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model”, Bull. Math. Biol., 70 (2008), No. 5, 1272-1296. doi: 10.1007/s11538-008 9299-0

De Jesus E.X. and Kaufman C., “Routh-hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations”, Phys. Rev. A (3), 35 (1987), No. 12, 5288-5290. doi: 10.1103/PhysRevA.35.5288

Esteva L., Gumel A.B. and De León C.V., “Qualitative study of transmission dynamics of drug-resistant malaria”, . Comput. Modelling, 50 (2009), No. 3-4, 611-630. doi: 10.1016/j.mcm.2009.02.012

Gao D. and Ruan S., “A multipatch Malaria model with logistic growth populations”, SIAM J. Appl. Math., 72 (2012), No. 3, 819-841. doi: 10.1137/110850761

Gourley S.A., Liu R. and Wu J., “Slowing the evolution of insecticide resistance in mosquitoes: a mathematical model”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), No. 2132, 2127-2148. doi: 10.1098/rspa.2010.0413

Guinovart C., Navia M., Tanner M. and Alonso P., “Malaria: burden of disease”, Current Molecular Medicine, 6 (2006), No. 2, 137-140. doi: 10.2174/156652406776055131

Hasler J., Stochastic and deterministic multipatch epidemic models, ProQuest LLC, Ann Arbor, MI, 2016.

Koella J. and Antia R., “Epidemiological models for the spread of anti-malarial resistance”, Malar J, 2 (2003), 3. doi: 10.1186/1475-2875-2-3

Lee S. and Castillo-Chavez C., “The role of residence times in two-patch dengue transmission dynamics and optimal strategies”, J. Theoret. Biol., 374 (2015), 152-164. doi: 10.1016/j.jtbi.2015.03.005

Lenhart S. and Workman J.T., Optimal control applied to biological models, Chapman Hall/CRC, Boca Raton, FL, 2007

Luz P., Codeco C, Medlock J., Struchiner C., Valle D. and Galvani A., “Impact of insecticide interventions on the abundance and resistance profile of aedes aegypti”, Epidemiology and Infection, 137 (2009), No. 8, 1203-1215. doi: 10.1017/S0950268808001799

Mishra A. and Gakkhar S., “Non-linear dynamics of two-patch model incorporating secondary dengue infection”, Int. J. Appl. Comput. Math., 4 (2018), No. 1, Paper No. 19, 22. doi: 10.1007/s40819-017-0460-z
Okosun K. and Makinde O.D., “Modelling the impact of drug resistance in malaria transmission and its optimal control analysis”, Int. J. Phys. Sci., 6 (2011), 6479-6487. doi: 10.5897/IJPS10.542

Palomino M., Villaseca P., Cárdenas F., Ancca J. and Pinto M., “Eficacia y residualidad de dos insecticidas piretroides contra triatoma infestans en tres tipos de viviendas: Evaluación de campo en Arequipa, Perú”, Rev. perú. med. exp. salud publica, 25 (2008), 9-16.

Prosper O., Ruktanonchai N. and Martcheva M., “Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control”, J. of Theoretical Biology, 303 (2012), 1-14. doi: 10.1016/j.jtbi.2012.02.010

Romero-Leiton J. and Ibargüen-Mondragón E., “Stability analysis and optimal control intervention strategies of a malaria mathematical model”, Appl. Sci., 21 (2019), 184-218.

Smith S.J., Kamara A.R., Sahr F., Samai M., Swaray A.S., Menard D. and Warsame M., “Efficacy of artemisinin-based combination therapies and prevalence of molecular markers associated with artemisinin, piperaquine and sulfadoxine-pyrimethamine resistance in sierra leone”, Acta Trop, 185 (2018), 363-370. doi: 10.1016/j.actatropica.2018.06.016

Tchuenche J.M., Chiyaka C., Chan D., Matthews A. and Mayer G., “A mathematical model for antimalarial drug resistance”, Math. Med. Biol., 28 (2011), No. 4, 335-355. doi: 10.1093/imammb/dqq017

Van den Driessche P. and Watmough J., “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025 5564(02)00108 6

Wei D., Luo X. and Qin Y., “Controlling bifurcation in power system based on lasalle invariant principle”, Nonlinear Dynam., 63 (2011), No. 3, 323-329. doi: 10.1007/s11071- 010-9806-3

World Health Organization, Community involvement in rolling back malaria, World Health Organization, Geneva, 2002

Zhang J., Cosner C. and Zhu H., “Two-patch model for the spread of West Nile virus”, Bull. Math. Biol, 80 (2018), No. 4, 840-863, doi: 10.1007/s11538-018-0404-8